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Abstract

In the present study, we sought to determine whether low-grade, chronic vascular insufficiency induced in a rodent model of chronic
cerebrohypoperfusion is sufficient, in and of itself, to trigger cleavage of the amyloid precursor protein (APP) intobA-sized fragments. We
report that chronic two vessel occlusion (2VO) results in progressive accumulation ofbA peptides detected by Western analysis in aged
rats correlating with a shift in the immunohistochemical localization of APP from neurons to extracellular deposits in brain parenchyma.
These data indicate that the 2VO paradigm reproduces features ofbA biogenesis characteristic of sporadic Alzheimer’s disease. © 2000
Elsevier Science Inc. All rights reserved.
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1. Introduction

It is well established that the integrity of the cerebral
vasculature is essential to maintaining cognitive function
during aging (for a review see [8]). Chronic disruption of
cerebral blood flow resulting from carotid insufficiency and
other ischemic states associated with aging can induce neu-
rological deficits and dementia [2,7,17,18]. These condi-
tions are exacerbated during arteriosclerosis-induced de-
mentia and Alzheimer’s disease by cerebral angiopathy and
morphological aberrations in brain microvasculature [11].
Although circulation-dependent behavioral deficits can be
modelled in experimental paradigms of chronic cerebrovas-
cular insufficiency, the impact of protracted low-grade
blood flow reduction on amyloid precursor protein (APP)
metabolism in the absence of other disease factors is still
ambiguous [5,6,15,18].

In Alzheimer’s disease, membrane-bound APP is proteo-
lytically processed intobA-sized fragments (8–15kDa) by
the sequential actions ofb- andg-secretases. These aberrant

fragments can accumulate both intraneuronally and as ex-
tracellular deposits in brain parenchyma, exerting cytotoxic
effects on neurons and increasing vascular permeability
[13,21,23,24]. The cerebrovascular actions ofbA peptides
render transgenic animals overexpressing APP more sus-
ceptible to ischemic injury presumably by increasing vas-
cular reactivity thereby eliciting more severe ischemia in
infarcted regions [24]. Conversely, ischemic attack has also
been implicated in the etiology ofbA deposition. After
transient ischemic attack, post-translational modification of
APP intobA-sized fragments and subsequent extracellular
bA deposition in brain parenchyma have been observed in
ischemic tissue [1,12,20,22]. The increase in APP, however,
may not always lead to neuropathologicalbA-associated
cleavage. After 3–4 weeks of bilateral carotid artery occlu-
sion, hippocampal APP immunoreactivity is only margin-
ally increased [10]. Cleavage of the parent protein tobA-
sized fragments after chronic ischemia was not addressed in
this study [10]. In experimental models of repeated ischemic
attacks, APP protein expression andbA accumulation have
been demonstrated not only in damaged tissue but also in
regions spared ischemic insult, thereby implicating APP
synthesis in both neuropathology and neural protection
[9,10]. The only report, to our knowledge, of APP process-
ing in a chronic model of ischemia has demonstrated en-
hanced APP cleavage in animals treated prophylactically
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with propentofylline (and thus spared severe ischemic in-
jury) relative to untreated ischemic animals [16]. Thus, it is
unclear whether changes in APP post-translation modifica-
tion after cerebral ischemia are, in fact, neuroprotective or
whether they contribute to progressive neurodegeneration
elicited by chronic cerebral hypoperfusion. Furthermore, it
is unknown whether chronic low-grade cerebral ischemia
leads tobA-deposition or whetherbA-associated cleavage
is only elicited by severe ischemia/reperfusion injury.

In the present study, we sought to characterize APP
processing in an experimental model of sustained low-grade
ischemia. In rodents, permanent ligation of the common
carotid arteries (2VO) induces morphological abnormalities
in neurons and quantifiable cell loss within 7 months of
blood flow reduction [5,15,18]. Using the 2VO paradigm,
we have demonstrated that a moderate but chronic reduction
of cerebral blood flow elicits protracted gliosis, incremental
apoptotic death in neurons in rat hippocampus, and progres-
sive behavioral impairment [3,4,15]. We now report that the
low grade chronic vascular insufficiency induced by 2VO is,
in and of itself, sufficient to trigger cleavage of APP into
bA-sized fragments and induce extracellular accumulation
of APP proteolytic products.

2. Materials and methods

2.1. Induction of chronic cerebral hypoperfusion by two
vessel occlusion (2VO) surgery

Permanent bilateral carotid occlusion resulting in sus-
tained low-grade ischemia was induced in male Sprague
Dawley retired breeders (Charles River Laboratories, PQ),
approximately 10 months of age (n 5 20), as described in
[3,15]. Sham surgeries were performed on age-matched
control rats (n 5 17). Rats were anesthetized with ketamine
hydrochloride (100 mg/kg IM) and sodium methohexital
(40 mg/kg IP). A ventral midline incision was made to
expose the carotid arteries and the blood vessels were gently
isolated from the carotid sheath and vagus nerve. In 2VO
surgery, each carotid artery was double-ligated with 5–0
silk suture just below the vascular bifurcation. In sham
operations, arteries were exposed but not ligated. Rats were
closely monitored during postoperative recovery and body
temperature maintained with a servo-controlled heating pad.
Animals were sacrificed at 2 (n 5 3 2VO; n 5 2 sham), 10
(n 5 4 2VO;n 5 3 sham), 20–27 (n 5 5 2VO;n 5 5 sham),
and 40 (n 5 8 2VO; n 5 7 sham) weeks after surgery.

For Western analyses, rats sacrificed at 2, 10, and 20–27
weeks were deeply anesthetized with sodium pentobarbitol
and euthanized by decapitation. Brains were rapidly re-
moved and blocked coronally at approximately bregma
21.8 and bregma26.04. The dorsal and ventral hip-
pocampi were removed. Cortices and remaining medial
structures were blocked horizontally at the rhinal fissure.
The dorsolateral cortex encompassing the somatosensory,

parietal, and cingulate cortices was separated from thalamus
and corpus callosum. The ventrolateral cortex encompass-
ing the entorhinal and piriform cortices and amygdaloid
nuclei was separated from optic tract, hypothalamus, and
ventral thalamic nuclei. Hippocampal and cortical protein
was isolated using Triazol (Life Sciences Research Tech-
nologies, Mississauga, ON, Canada) according to the pro-
tocol provided by the manufacturer. Forn 5 5 animals/
condition sacrificed at 20–27 weeks post surgery, protein
extracts were prepared separately from each animal for
hippocampus and combined dorsolateral and ventrolateral
cortices. For all other animals, tissue was pooled at each
time point prior to protein extraction.

For immunohistochemical analysis, animals sacrificed at
40 weeks postsurgery (n 5 5 per condition) were deeply
anesthetized with sodium pentobarbitol and euthanized by
cardiac perfusion with heparinized saline followed by 4%
paraformaldehyde in 100 mM phosphate buffer (pH 7.4).
Brains were postfixed in phosphate-buffered 4% parafor-
maldehyde for 24 h at 4°C and tissue was paraffin-embed-
ded according to standard histological procedure. Coronal
sections were cut on a rotary microtome at 8mm. Sections
at approximately bregma23.8 were analyzed. All manip-
ulations were performed in compliance with approved in-
stitutional protocols and according to the strict ethical
guidelines for animal experimentation established by the
Medical Research Council (Canada).

2.2. Western analyses

Protein (40 mg) was separated by SDS-PAGE under
reducing conditions on 12.5% and 7.5% polyacrylamide
gels containing 0.1% (w/v) SDS and electroblotted to Im-
mobillon membrane. Membranes were incubated overnight
with either polyclonal antibody anti-bA (1:5, Roche, Laval,
PQ) or monoclonal antibody anti-APP (1:10; Roche). An-
ti-bA was raised against the synthetic peptide DAEFRH-
DSGYEVHHQKLLVFFAEDVGSNKGAIIGLMVGGVIA
recognizing C-terminal epitopes located between amino ac-
ids 597–638 of human APP. Anti-bA detects amyloidgenic
bA in both human and rat. Anti-APP was raised against the
final C-terminus amino acids 642–695 of human APP and
detects APP, intermediate-sized fragments, and short car-
boxyl fragments released during final amyloidgenicbA
processing in both human and rat. Secondary antibodies
were a horse radish peroxidase-conjugated anti-rabbit IgG
(1:400; Roche) or a horseradish peroxidase-conjugated anti-
mouse IgG (1:1000; Jackson Immunolabs, West Grove, PA,
USA). Immunoreactive fragments were visualized by
chemiluminescence according to the protocol established by
the manufacturer (Pierce, Rockford, IL, USA). In control
reactions, membranes were incubated with secondary re-
agent in the absence of primary antibody. In all reactions,
membranes were blocked in 10 mM PBS (10 mM sodium
phosphate buffer, pH 7.5, 154 mM NaCl) containing 1%
heat-denatured casein and washed repeatedly between reac-
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tions in blocking solution containing 0.35% Tween-20 (an-
ti-bA) or 0.1% Tween-20 (anti-APP). Antibodies were di-
luted in blocking solution lacking Tween-20.

Densitometry was performed on a LKB Ultrascan En-
hanced Laser Densitometer running GelScan XL software
(Pharmacia, Baie d’Urfe´, PQ). Data are presented as relative
amount of protein as defined by the “Area(%)” value (the
relative to total integrated area of the absorbance peak)
multiplied by 100. The “Area(%)”x100 value is expressed
as densitometric units. Values under 200 fall within in linear
range for densitometric analysis. To obtain Western blots

within linear range, multiple exposures were developed.
Statistical analysis were only performed on blots for which
maximal signal intensity was below 200. Only blots that
were developed simultaneously were compared statistically.
Densitometric data were analyzed by Student’st test com-
paring 2VO versus sham witha set atP , 0.05.

2.3. Immunohistochemistry

Paraffin-embedded sections were deparaffinized in
clearane, rehydrated through a series of graded alcohols,

Fig. 1. Increased APP protein expression and APP cleavage into intermediate- andbA-sized fragments are detected in rat parietal-temporal cortex 20–27
weeks after 2VO surgery. Protein (40mg) was subjected to Western analysis using anti-APP to detect APP and intermediate cleavage fragments (A, upper
blots) or anti-bA to detectbA-sized fragments (A, lower blots) as described in Materials and methods. Blots were reacted with antibodies simultaneously
and exposed for identical periods of time. Densitometry was performed on exposures that fell within linear range for analysis as described in Materials and
methods. Figures depict longer exposure times than those used for densitometry. A significant increase in the amounts of APP detected and in the production
of bA-sized fragments was detected in 2VO-operated rats relative to sham-operated rats (Panel B). A significant increase in the cleavage of intermediatesized
fragments was detected in 2VO-operated rats relative to sham-operated rats (Panel B). *P , 0.05. **P , 0.01.
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and equilibrated in 10 mM PBS (10 mM sodium phos-
phate buffer, pH 7.2, 154 mM NaCl). Sections were
reacted overnight with primary antibody (APP, 1:100) at
4°C, labeled for 1 h at room temperature with biotinyl-
ated goat anti-mouse IgG (1:300; Sigma Chemical Co.,
St. Louis, MO, USA), incubated for 1 h in extravidin-
peroxidase (1:40, Sigma), and reacted with 1 mg/ml dia-
minobenzidine in 50 mM Tris-HCl, pH 8.0 containing
0.003% H2O2. Antibodies and tertiary reagents were di-
luted in Ab buffer (10 mM PBS, 0.3% Triton-X, 3%
BSA, pH 7.2).

3. Results

3.1. Changes in APP processing elicited by 2VO

Retired male Sprague Dawley breeders were 10
months old at the time of sham (n 5 5) or 2VO surgery
(n 5 5). Rats were sacrificed between 20 and 27 weeks
after surgery. Brains were blocked coronally at approxi-
mately bregma21.8 and bregma26.04. Western immu-
noblots of protein extracts from the parietal-temporal
cortex and the hippocampal formation were analyzed. In

Fig. 2. Increased APP protein expression and APP cleavage into intermediate-sized fragments but notbA is detected in rat hippocampus after 2VO
surgery. Protein (40mg) was subjected to Western analysis using anti-APP to detect APP and intermediate cleavage fragments (A, top) or anti-bA
to detectbA-sized fragments (A, bottom) as described in Section 2. Blots were reacted with antibodies simultaneously and exposed for identical
periods of time. Densitometry was performed on exposures that fell within linear range for analysis as described in Materials and methods. Figures
depict longer exposure times than those used for densitometry. A highly statistically significant increase in the amounts of APP detected and in the
cleavage of intermediate sized fragments was detected in 2VO-operated rats relative to sham-operated rats (B).bA-sized fragments were not detected
in either condition.
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parietal-temporal cortex, a significant increase in the
amounts of APP proprotein (t 5 2.49, df5 8, P , 0.05),
intermediate sized degradative products (t 5 4.72, df 5
8, P , 0.01), andbA-like fragments (t 5 2.51, df 5 8,
P , 0.05) were observed in 2VO-operated rats relative to
sham-operated rats (Fig. 1A and B). In the hippocampus,
a significant increase in the amounts of APP proprotein (t
5 6.58, df 5 8, P , 0.01) and intermediate-sized deg-
radative products (t 5 4.73, df 5 8, P , 0.01) were
observed in 2VO- compared to sham-operated rats (Fig.
2A and B). Cleavage of APP intobA-sized fragments
was not detected in rat hippocampus 20 –27 weeks after
2VO surgery.

To qualitatively examine the kinetics of this cleavage,
replicate Western blots were performed on pooled protein
samples extracted from animals sacrificed at 2 (n 5 3 2VO;
n 5 2 sham), 10 (n 5 4 2VO; n 5 3 sham), or 27 (n 5 3
2VO; n 5 2 sham) weeks after surgery. Densitometry was
not performed, given that protein samples were pooled
across subjects and immunoblots were only conducted in
replicate. To more precisely isolate changes in parietal-
temporal cortex, tissue was dissected into dorsolateral cor-
tex encompassing the somatosensory, parietal, and cingulate
cortices and ventrolateral cortex encompassing the entorhi-
nal and piriform cortices and amygdaloid nuclei prior to
extraction. In ventrolateral cortex of sham-operated rats,
bands corresponding to full-length APP, proteolytic inter-
mediate products, and potentially amyloidgenicbA were
identified (Fig. 3A). An increase in APP proprotein levels
was consistently observed over time after both sham and
2VO surgery with a more pronounced increase noted in

2VO rats (Fig. 3A, top; compare 2- and 10-week lanes in
both sham and 2VO conditions).bA cleavage was detected
at 10 weeks postsurgery in sham-operated animals, but not
at earlier time-points (Fig. 3A, bottom; compare sham 2 and
10 week lanes). Synthesis of this potentially amyloidgenic
isoform was accelerated by 2VO surgery. Animals exhib-
ited a 12kDa anti-bA immunoreactive band 2 weeks after
2VO surgery but not sham surgery, with a marked increase
in synthesis observed at 10 weeks (Fig. 3A, bottom; com-
pare 2VO 2- versus 10-week lanes). In dorsolateral cortex,
full-length APP, intermediate proteolytic products, andbA
sized fragments were detected (Fig. 3B). Maximal levels of
APP proprotein were observed 10 weeks after sham or 2VO
surgery (Fig. 3B, top). Consistent with data presented for
n 5 5 animals in Fig. 1, 2VO rats synthesized more APP
and intermediate sized fragments than sham-operated ani-
mals 27 week after surgery (Fig. 3B, top; compare sham and
2VO 27 week lanes). Although a progressive accumulation
of bA fragments was observed between 2 and 27 weeks
postsurgery in sham-operated animals, this increase was
markedly augmented following 2VO surgery (Fig. 3B, bot-
tom).

In hippocampus, full length APP isoforms were de-
tected in sham-operated animals with an increase in syn-
thesis over time after surgery (Fig. 4A; compare sham 2-
and 10-week lanes). 2VO surgery was associated with an
even greater increase in the levels of intermediate pro-
teolytic fragments (Fig. 4A; compare sham and 2VO
lanes). As with later time points (Fig. 2),bA proteolytic
products were not detected in hippocampus following
sham or 2VO surgery (Fig. 4B).

Fig. 3. A time-dependent increase in APP cleavage is detected in rat ventrolateral and dorsolateral cortex following 2VO surgery. Protein was isolated from
rat ventrolateral (A) and dorsolateral (B) cortices. Protein was pooled from tissue extracted from 2-week 2VO animals (n 5 3), 2-week sham animals (n 5
2), 10-week 2VO animals (n 5 4), 10-week sham animals (n 5 3), 27-week 2VO animals (n 5 3, dorsolateral cortex only), and 27-week sham animals (n 5
2, dorsolateral cortex only). Western analysis was performed using anti-APP (upper blots) to detect APP and intermediate cleavage fragments or anti-bA
(lower blots) to detectbA-sized fragments as described in Materials and methods.

211S.A.L. Bennett et al. / Neurobiology of Aging 21 (2000) 207–214



3.2. Extracellular deposition of APP biosynthetic products

Immunohistochemistry for APP was performed using
anti-APP at 40 weeks post 2VO or sham surgery. Consistent
with the reduction in full length APP synthesis observed by
Western analysis after 20–27 weeks of 2VO, a qualitative
decrease in the extent of neuronal reactivity was observed
40 weeks after surgery in 2VO rats (Fig. 5B) compared to
sham-operated animals (Fig. 5A). Notably, de novo extra-
cellular deposition of APP immunoreactive deposits was
evident in brain parenchyma of 2VO animals in ventrolat-
eral cortex (Fig. 5B); an area that exhibited APP cleavage
consistent with production ofbA by Western analysis. Dep-
ositions were not observed in areas that failed to exhibitbA
biosynthesis (i.e. hippocampus; data not shown).

4. Conclusions

In the present study, we characterize APP cleavage in
aging rodent hippocampus and parietal-temporal cortex af-
ter induction of low-grade chronic vascular insufficiency.
Our results indicate that chronic cerebrohypoperfusion elic-
ited by 2VO is sufficient to stimulate aberrant APP process-

Fig. 4. APPcleavage into intermediate proteolytic fragments increases over
time in rat hippocampus following 2VO surgery. Protein was isolated from
2-week 2VO animals (n 5 3), 2-week sham animals (n 5 2), 10-week 2VO
animals (n 5 4), or 10-week sham animals (n 5 3). Western analysis was
performed using anti-APP to detect APP and intermediate cleavage fragments
(A) or anti-bA to detectbA-sized fragments (B) as described in Section 2.

Fig. 5. Immunohistochemical localization of APP in ventrolateral cortex of sham- and 2VO-operated rats 40 weeks after surgery. Immunohistochemistry was
performed using anti-APP as described in Materials and methods. (A) Sham-operated ventrolateral cortex. Note neuron-associated labeling of APP. (B)
2VO-operated ventrolateral cortex. Note the reduction of APP immunoreactivity in neurons and extracellular deposition of material in brain parenchyma (B).
Anti-APP immunoreactive extracellular deposits were not detected in brain regions that failed to exhibitbA-sized fragments by Western analysis (i.e.,
hippocampus). Right-hand panel depicts staining of adjacent sections in the absence of primary antibody.
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ing including production of potentially amyloidgenicbA
and accumulation of extracellularbA deposits in rat cortex
in the absence of any other disease factors. These data
suggest that chronic cerebral hypoperfusion may contribute
to the alterations in APP biosynthesis associated with Alz-
heimer’s disease.

4.1. Biogenesis ofbA-elicited by 2VO

APP proteolysis tobA-sized fragments was observed in
rodents after 2VO in parietal-temporal cortex but not hip-
pocampus. In cortical tissue, full-length partially glycosy-
lated APP (100 kDa), intermediate proteolytic fragments
(20–90 kDa), and smallerbA-like products (,15 kDa)
were detected by Western analysis.bA biogenesis was
observed at low levels in sham-operated rats in these brain
regions. However, accumulation ofbA-sized fragments was
exacerbated over time in cortical tissue after 2VO with
synthesis more pronounced in ventrolateral parietal-tempo-
ral cortex. This sustained accumulation ofbA associated
with 2VO surgery correlated with a subsequent shift in
immunohistochemical localization of APP from neuron-
associated staining to extracellular deposits in brain paren-
chyma. bA-associated cleavage was not detected in hip-
pocampus, although an increase in intermediate proteolytic
APP fragments was noted over time after 2VO-surgery. To
our knowledge, this finding represents the first time that
aberrant APP processing characteristic of normal aging and
late-onset Alzheimer’s disease has been demonstrated in a
rodent model of low grade chronic vascular insufficiency in
the absence of any other disease factors.

4.2. Comparison with APP processing in
Alzheimer’s brain

The primary difference between APP processing ob-
served in the 2VO rodent model of chronic vascular insuf-
ficiency and APP proteolysis detected in Alzheimer’s tissue
is the regional localization of proteolytic events. In Alzhei-
mer’s brain,bA-associated cleavage is frequently detected
in both hippocampus and parietal-temporal cortex. The lack
of bA accumulation in rodent hippocampus may be the
result of regional differences in cerebral hypoperfusion elic-
ited. Previous work has demonstrated that the chronic re-
ductions in blood flow after 2VO are more pronounced in
cortical structures than in hippocampus. 2VO in rat elicits
sustained low-grade ischemia characterized by an immedi-
ate 50% reduction in cerebral blood flow to hippocampal
and a 75% reduction in cerebral blood flow to cortical
structures within hours of 2VO surgery [14,19]. A chronic
25% reduction in cerebral blood flow to hippocampal and a
40% reduction in cerebral blood flow to cortical structure is
observed within days of carotid ligation [14,19]. No further
improvements in cerebral blood flow are detected after
several months of 2VO [5,14,19]. Thus, it is consistent that
bA-associated proteolytic events elicited by sustained hy-

poperfusion would be more pronounced in cortical than
hippocampal structures.

5. Conclusion

In the present study, we sought to characterize APP
processing in an experimental model of sustained low-grade
ischemia. We have previously demonstrated that a moderate
but chronic reduction of cerebral blood flow elicits neuro-
pathology associated with progressive behavioral impair-
ment. We now demonstrate that 2VO can triggerbA bio-
genesis and deposition of extracellular amyloid deposits in
the absence of any other disease factors. These data dem-
onstrate that chronic low grade cerebral hypoperfusion has
effects on APP proteolytic processing similar to those as-
sociated with sporadic Alzheimer’s disease and suggests
that chronic 2VO will be a useful model to investigate the
behavioral effects of aberrant APP cleavage.
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