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Parkinson’s disease (PD) is the second most common neurodegenerative disease, the
main pathological hallmark of which is the accumulation of α-synuclein (α-syn) and the
formation of filamentous aggregates called Lewy bodies in the brainstem, limbic system,
and cortical areas. Lipidomics is a newly emerging field which can provide fresh insights
and new answers that will enhance our capacity for early diagnosis, tracking disease
progression, predicting critical endpoints, and identifying risk in pre-symptomatic
persons. In recent years, lipids have been implicated in many aspects of PD pathology.
Biophysical and lipidomic studies have demonstrated that α-syn binds preferentially
not only to specific lipid families but also to specific molecular species and that these
lipid-protein complexes enhance its interaction with synaptic membranes, influence its
oligomerization and aggregation, and interfere with the catalytic activity of cytoplasmic
lipid enzymes and lysosomal lipases, thereby affecting lipid metabolism. The genetic link
between aberrant lipid metabolism and PD is even more direct, with mutations in GBA
and SMPD1 enhancing PD risk in humans and loss of GALC function increasing α-syn
aggregation and accumulation in experimental murine models. Moreover, a number
of lipidomic studies have reported PD-specific lipid alterations in both patient brains
and plasma, including alterations in the lipid composition of lipid rafts in the frontal
cortex. A further aspect of lipid dysregulation promoting PD pathogenesis is oxidative
stress and inflammation, with proinflammatory lipid mediators such as platelet activating
factors (PAFs) playing key roles in arbitrating the progressive neurodegeneration seen
in PD linked to α-syn intracellular trafficking. Lastly, there are a number of genetic risk
factors of PD which are involved in normal lipid metabolism and function. Genes such
as PLA2G6 and SCARB2, which are involved in glycerophospholipid and sphingolipid
metabolism either directly or indirectly are associated with risk of PD. This review seeks
to describe these facets of metabolic lipid dysregulation as they relate to PD pathology
and potential pathomechanisms involved in disease progression, while highlighting
incongruous findings and gaps in knowledge that necessitate further research.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disease and is projected to affect up to 9
million people worldwide by 2030 (Dorsey et al., 2007). While
5–10% of PD cases have a genetic basis, referred to as familial PD,
90–95% are defined as sporadic/idiopathic and have unknown
etiology, involving a complex interplay of environmental factors
and the genome. The familial form of PD has an earlier age
of onset (<50 years), progresses faster, and is generally more
severe than the sporadic form (Klein and Westenberger, 2012).
Monogenic familial PD is caused by mutations in six genes:
SNCA, Parkin, LRRK2, DJ-1, PINK1, ATP13A2 (Klein and
Westenberger, 2012), with some overlap between the genes
involved in familial and sporadic PD respectively, mainly
SNCA and LRRK2 (van der Brug et al., 2015; Verstraeten
et al., 2015). The greatest risk factor, however, for both PD
and the related α-synucleinopathy Dementia with Lewy Bodies
(DLB), is mutations in the glucosylceramidase-beta (GBA)
gene, which encodes the lysosomal enzyme glucocerebrosidase
(GCase) (Clark et al., 2010; Tsuang et al., 2012), implicating
aberrant sphingolipid metabolism in PD pathogenesis. As GBA
is also the genetic determinant of Gaucher Disease, differential
disruption of sphingolipid metabolic pathways likely dictates
disease penetrance and phenotype. Therefore, elucidating
disease-specific metabolic disruptions provides a new avenue for
cause-directed treatment of defining metabolic determinants.

The main pathological hallmark of PD is the accumulation
of α-synuclein (α-syn), encoded by SNCA, and the formation
of filamentous aggregates called Lewy bodies in the brainstem,
limbic system, and cortical areas. This is accompanied by the
progressive loss of dopaminergic neurons in the substantia nigra
and the consequent reduction of dopamine in the striatum which
leads to motor dysfunction. The classic motor symptoms of
PD are resting tremor, rigidity, shuffling gait, and bradykinesia
(slow movements). The symptoms are progressive, but the rate
of deterioration in patients is variable (Fritsch et al., 2012).
While PD is primarily a movement disorder, it is also associated
with numerous non-motor symptoms which may arise much
earlier in the course of the disease (Kalia et al., 2015). Non-
motor symptoms include a combination of sensory and sleep
disturbances, olfactory deficits, autonomic dysfunction, and
neuropsychiatric symptoms such as visual hallucinations (Jain,
2011). According to the Braak staging scheme, the temporal
mesocortex and neocortex, along with distinct areas of the
brainstem, become progressively involved over time, with the
substantia nigra (SN) being severely affected by stage 4 as well
as some effects on the amygdala, while at stage 5 the anterior
cingulate cortex (ACC) becomes affected (Braak et al., 2003).

The Lewy Body Dementias, DLB and PD with Dementia
(PDD) are forms of dementia-parkinsonisms that overlap
significantly with Alzheimer’s disease (AD) and PD. Both
are defined by the deposition of AD-associated amyloid-β
plaques and the intraneuronal accumulation of PD-associated
Lewy bodies. PDD and DLB exhibit few differences on
postmortem pathological examination and there are no
laboratory-based biomarkers capable of discriminating these

disorders (Chahine et al., 2014). Differential diagnosis rests
solely on clinical observations (Henchcliffe et al., 2011). DLB
is diagnosed when cognitive impairment, hallucinations, and
aggressive dream enactments either precede or manifest within
12 months of the onset of parkinsonisms (Henchcliffe et al.,
2011). PDD is diagnosed when patients exhibit these same signs
of dementia at least 12 months after parkinsonisms (Henchcliffe
et al., 2011). Mutations in GBA are associated with increased
risk of PD and DLB (Clark et al., 2010; Tsuang et al., 2012).
Heterozygous GBA mutations are found in ∼25% of all DLB and
>10% of PD patients (Clark et al., 2010; Tsuang et al., 2012).
Defining how these mutations are responsible for progressive
critical metabolic impairments that precipitate PD, DLB, and
PDD, represents a novel, potentially transformative, means of
identifying persons at risk of imminent decline and developing
new therapeutic avenues including substrate reduction and
small molecule enzyme enhancement to alter their prognosis
as reviewed below.

As with numerous other diseases, animal models have
played an important role in elucidating various aspects of the
pathomechanism of PD. The majority of these models use toxins
that affect mitochondrial functions, such as 1-methyl,4-phenyl-
1,2,3,6 tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-
OHDA). MPTP is actively taken up into nigrostriatal neurons,
where it inhibits mitochondrial oxidative phosphorylation
and causes cell death (Singer et al., 1987), while 6-OHDA
accumulates in the cytosol of dopaminergic neurons and inhibits
mitochondrial respiration (Glinka et al., 1997). We will be
referring back to these two models throughout this review to
point out how they have contributed to the knowledge of lipid
changes in PD. Genetically modified models with disrupted genes
known to be involved in PD are also used (Meredith et al.,
2008), specifically relevant to this review, those incorporating
lipid regulatory genes (Sardi et al., 2011, 2017; Tayebi et al., 2017).

Lipids are implicated in many aspects of PD pathology ranging
from specific cytotoxic interactions with α-syn, to mutations
in enzymes involved in lipid metabolism genes enhancing PD
risk, lipid pathway alterations, and lipid involvement in oxidative
stress and inflammation. This review will describe all of these
aspects and point toward how the study of lipids in PD may
provide novel answers both as potential biomarkers and novel
treatment targets in the future.

LIPID INTERACTIONS WITH
α-SYNUCLEIN IN THE PATHOGENESIS
OF PARKINSON’S DISEASE

α-syn is a small cytosolic protein that is highly expressed in
the brain and is mainly located in synaptic terminals. It is
composed of three domains: (1) a C-terminal region which is
rich in aspartate and glutamate; (2) an internal hydrophobic
domain; and (3) an amphipathic N-terminal domain (Golovko
et al., 2009). There are several genetic variants for the α-syn
locus related to both familial and sporadic PD, with A53T, A30P,
and E46K being one of the most common mutations (Ostrerova-
Golts et al., 2000; Markopoulou et al., 2008; Gispert et al., 2015).
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α-syn is present ubiquitously in all major brain cell types,
including astrocytes (Cheng and Trombetta, 2004; Castagnet
et al., 2005), microglia (Austin et al., 2006; Papadopoulos et al.,
2006), and oligodendroglia (Richter-Landsberg et al., 2000; Mori
et al., 2002). The physiological function of α-syn remains largely
unknown (Jo et al., 2000). Based on its widespread distribution, it
has been suggested that α-syn may play a wide number of roles in
the nervous system, including regulating lipid metabolism (Jenco
et al., 1998; Sharon et al., 2003a; Payton et al., 2004; Castagnet
et al., 2005; Golovko et al., 2005, 2006, 2007; Narayanan et al.,
2005; Barcelo-Coblijn et al., 2007), inflammatory response (Dalfo
et al., 2004; Austin et al., 2006; Papadopoulos et al., 2006), the
mobilization of synaptic vesicles (Murphy et al., 2000; Cabin
et al., 2002; Dalfo et al., 2004), the control of neurotransmitter
release (Abeliovich et al., 2000; Gureviciene et al., 2007; Nemani
et al., 2010; Tsigelny et al., 2012; Wang et al., 2016), as well
as modulating dopamine biosynthesis (Perez et al., 2002; Sidhu
et al., 2004) and transport (Lee et al., 2001; Wersinger and Sidhu,
2003). A role in neuronal development and in synaptogenesis
has also been proposed since α-syn appears early in murine
brain development and is redistributed from the cytosol to the
nerve terminals (Hsu et al., 1998). Recently it was demonstrated
that α-syn also has a role in mitochondrial function, specifically
as a physiological modulator of ATP synthesis by altering the
efficiency of ATP synthase (Ludtmann et al., 2016).

An extensive body of research has accumulated over the
past 20 years concerning α-syn membrane binding. It has been

well established that α-syn is disordered in solution, but it can
assume an α-helical conformation upon lipid membrane binding
(Davidson et al., 1998; Zhu and Fink, 2003). As early as 1988,
the association of α-syn with lipids became apparent when it
was found to co-localize with synaptic vesicles, a finding that has
been validated by multiple laboratories (Maroteaux et al., 1988;
Sharon et al., 2003a; De Franceschi et al., 2011). The binding of
α-syn to lipids has been well characterized in a number of lipid
systems (see Figure 1 for summary of α-Syn lipid interactions
leading to aggregation) (Eliezer et al., 2001; Bodner et al., 2009;
Fusco et al., 2014). Moreover, lipidomic assessments have shown
that specific lipid-α-syn complexes are required to enhance α-syn
binding to synaptic membranes, highlighting 1-O-hexadecyl-2-
acetyl-sn-glycero-3-phosphocholine [PC(O-16:0/2:0)]1, a platelet
activating factor (PAF) glycerophosphocholine, as one of these
principal lipid second messenger components (Wislet-Gendebien
et al., 2008). However, less information exists on the modulation
of the kinetics of conversion of monomeric α-syn into amyloid
fibrils by different membrane lipid compositions (Zhu et al.,
2003; Fink, 2006; Martinez et al., 2007). Moreover, most of these

1Lipid nomenclature describes the molecular identity of phospholipids as follows:
PC refer to a lipid with a glycerophosphocholine head group. O- indicates an
ether linkage; P- indicates a vinyl ether linkage; no designation refers to an ester
linkage to the glycerol backbone. PC(O-16:0/2:0) refers to a molecular species
with a hydrocarbon chain of 16 carbons and no unsaturations linked to the
phosphoglycerate backbone by an ether/alkyl linkage at the sn-1 position and a
2 carbon acetyl chain at the sn-2 position with no unsaturations.

FIGURE 1 | Lipid involvement in the aggregation and propagation of α-synuclein. Upon accumulation of unfolded α-syn, the monomers interact to form dimers,
which can further grow to oligomers. These processes can take place both in the cytoplasm and in association with different cellular membranes. When soluble
monomers continue to attach to oligomers, this eventually gives rise to amyloid fibrils, which can accumulate and form proteinaceous inclusions called Lewy bodies.
α-Syn accumulation, oligomerization, and fibrillogenesis is highly affected by the lipid composition of the membranes it binds to, with a number of lipid species
enhancing various steps of the process, as indicated on the diagram. The α-synuclein oligomers and fibrils formed are highly cytotoxic, leading to
neurodegeneration. Cardiolipin is able to pull α-syn monomers from oligomeric fibrils, thereby buffering the toxicity. DHA, docosahexaenoic acid; GM1 and GM3,
gangliosides; GPE, glycerophosphoethanolamine; GPI, glycerophosphoinositol; PUFAs, polyunsaturated fatty acids; TAGs, triacylglycerols. Figure was adapted from
Lashuel et al. (2013).
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studies have been performed either in the presence of catalyzing
polymer surfaces (Grey et al., 2011) and/or under mechanical
agitation (Zhu et al., 2003). These experiments therefore do not
fully elucidate the endogenous mechanism of α-syn aggregation,
as in these conditions the protein also aggregates in the
absence of lipids. Galvagnion et al. (2016) used protein-repellant
surfaces to undertake a systematic study of α-syn binding to
different model membranes (Galvagnion et al., 2016). Their
results indicated that the efficiency of α-syn binding was
dependent on the membrane fluidity. α-Syn showed an affinity
for negatively charged phospholipids, in addition to complexing
with small bioactive glycerophosphocholine second messengers
including the PAF, PC(O-16:0/2:0) with aggregation enhanced
in the presence of lipid species with short hydrocarbon chains
(Wislet-Gendebien et al., 2008; Galvagnion et al., 2016). This
observation may have pathological implications, as lipids with
short hydrocarbon chains can be formed during polyunsaturated
lipid peroxidation, a process which is very damaging to cells
and which affects membrane fluidity (Beranova et al., 2010;
Negre-Salvayre et al., 2010).

Physiological Aspects of α-Synuclein
Interactions With Lipids
Binding of α-syn to lipids appears to be necessary for many
of α-syn’s proposed physiological roles. Upon binding to lipid
vesicles, α-syn undergoes a major structural transition from
random coil to α-helical structure (Davidson et al., 1998),
supporting the possible role of α-syn in lipid binding and
transport. Cole et al. (2002) reported that α-syn accumulated
on phospholipid monolayers surrounding lipid droplets that
contained high levels of triacylglycerols (TAGs). Accumulation
was seen in both HeLa cells that had been treated with
high fatty acid concentrations as well as primary hippocampal
neurons. The accumulated α-syn prevented the stored TAGs
from being hydrolyzed. In contrast, when the same experiment
was performed in cells with PD mutant α-syn, there was variable
distribution on the lipid droplets which resulted in higher levels
of TAGs being hydrolyzed (Cole et al., 2002). The PD mutant
α-syn A30P showed no lipid droplet binding, while A53T did
bind but was not able to protect the stored TAGs from hydrolysis
(Cole et al., 2002). These results suggest that wild-type α-syn
is able to protect lipid droplets from neutral lipases or directly
inhibit them, while mutant α-syn loses this ability. Although
the A53T mutation does not impair the binding of the α-syn to
lipid droplets, it could alter the conformation of the protein in a
way that renders it ineffective in preventing TAG hydrolysis. Jo
et al. reported that wild-type α-syn bound to acidic phospholipid
vesicles and this binding was significantly augmented by the
presence of glycerophosphoethanolamine (GPE), a family of
neutral phospholipids (Jo et al., 2000). The association of
soluble wild-type α-syn with planar lipid bilayers resulted in
the formation of aggregates and small fibrils. The PD mutant
α-syn A53T induced similar disruption in the lipid membranes,
although at a slower rate.

α-Syn lipid binding also appears to play a role in
mitochondrial function. As will be discussed in more detail

in Section “Binding of α-syn With Mitochondrial Membranes,”
wild-type α-syn has been demonstrated to bind to cardiolipin,
a specific phospholipid in the inner mitochondrial membrane
(Guardia-Laguarta et al., 2014; Robotta et al., 2014). By
creating a triple synuclein knock-out to avoid confounding
effects of β-synuclein and γ-synuclein, Ludtmann and
colleagues demonstrated that α-syn plays a role in modulating
mitochondrial bioenergetics by interacting with ATP synthase
and increasing its efficiency (Ludtmann et al., 2016). Therefore,
it appears that the binding of α-syn to cardiolipin in the
mitochondrial membrane its part of its physiological role as
related to mitochondrial metabolism.

A number of studies have shown α-syn to also have a
function in lipid metabolism. It has structural similarities to
class A2 lipoproteins (George et al., 1995; Davidson et al., 1998),
some sequence similarity to fatty acid binding protein (FABP)
(Sharon et al., 2001), and is present in considerable amounts
in microsomes, where complex lipid metabolism occurs (Sharon
et al., 2001; Golovko et al., 2006). The lipid-binding domain of
α-syn, which adopts a secondary structure very similar to that
of phospholipase A2 proteins, in fact mediates multimerization
induced by polyunsaturated fatty acids (PUFAs) (Perrin et al.,
2001). The specific effects that α-syn has on different aspects of
lipid metabolism will be discussed in detail in Section “The Role
of α-syn in Lipid Metabolism.”

Taken together, these results suggest that the interaction
of α-syn with lipids is physiologically important, and
that PD-associated mutations may impair the normal
function of the protein.

Pathological Aspects of α-Synuclein
Lipid Binding
Lipid binding has also been shown to play an integral role in
the pathological aspects of α-syn, namely by augmenting α-syn
multimerization. α-Syn multimerization and subsequent fibril
growth are believed to play central roles in PD pathogenesis
(Conway et al., 1998; Taschenberger et al., 2012). Initially
Davidson and colleagues showed that α-syn preferentially bound
to vesicles containing acidic phospholipids, but not to those with
neutral phospholipids (Davidson et al., 1998). Stable multimers
formed upon exposure to glycerophosphoinositols, the most
acidic phospholipids (Davidson et al., 1998). Interestingly, one
of the important functions of glycerophosphoinositols is to
modulate vesicle cycling at presynaptic terminals where α-syn
is enriched (Frere et al., 2012). Further studies determined that
α-syn oligomerization was also enhanced in the presence of
PUFAs (Perrin et al., 2001). In mesencephalic neuronal cells
treated with fatty acids, increasing the degree of unsaturation
of the fatty acids dramatically increased the amount of soluble
α-syn oligomers, while treatment with fully saturated fatty
acids lowered levels of oligomeric α-syn (Sharon et al., 2003b).
The length of the carbon chain also affected the amount of
oligomerization, although to a smaller extent than did degree
of saturation. In the same study, Sharon et al. showed that
the soluble α-syn oligomers then associated into insoluble
high-molecular weight complexes. Assayag et al. (2007) further
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expanded on these findings, demonstrating that exposure of
dopaminergic neuronal cell lines overexpressing α-syn to PUFAs
resulted in the formation of α-syn oligomers, and later led to
the development of Lewy-like proteinaceous inclusions in the
cytoplasm. Furthermore, they reported that the α-syn oligomers
were associated with cytotoxicity, although the existence of the
Lewy-like aggregates seemed to be protective. Therefore, the
types of lipids in the cellular environment play a critical role in the
aggregation of α-syn suggesting that dysregulation of lipid levels
and lipid pathways may be an important contributing factor in
the pathogenesis of PD.

Polyunsaturated fatty acids are essential in maintaining
neuronal membrane fluidity and permeability (Ruiperez et al.,
2010). They also play a number of critical roles within the
cell, including the activation of phospholipases (Kim et al.,
1999), recycling of synaptic vesicles (Schmidt et al., 1999), and
the inhibition of ion channels (Leaf et al., 1999). Arachidonic
acid (ARA) and docosahexaenoic acid (DHA) are the most
enriched PUFAs in the human brain (Chen et al., 2008).
α-Syn has been reported to immediately change its structure
in the presence of both of ARA and DHA, which are released
upon glycerophospholipid hydrolysis, taking on its α-helical
conformation (Broersen et al., 2006; De Franceschi et al., 2009).
Upon longer exposure to DHA, α-syn gradually assembles
into amyloid-like fibrils, with the DHA itself being part of
the aggregate (Broersen et al., 2006). DHA accounts for 60%
of glycerophospholipid esterified fatty acids in the plasma
membrane, making it an important factor to consider in
the potential aggregation of α-syn and its potential functions
(Lukiw and Bazan, 2008). Furthermore, the level of α-syn
gene expression is increased upon elevated DHA intake,
and the consequently formed oligomers are toxic to cells
(De Franceschi et al., 2009, 2011).

Another family of lipids, the gangliosides, have also been
shown to accelerate the kinetics of α-syn conversion to amyloid
fibrils (Grey et al., 2015), specifically the gangliosides GM1 and
GM3. Gangliosides are composed of monosaccharide groups
attached to a ceramide backbone and serve as precursors to the
complex gangliosides which are abundant in the brain (Proia,
2004). The interaction of gangliosides with amyloid-β, the
protein associated with AD pathology, has been well established
(Yanagisawa et al., 1995; Hayashi et al., 2004; Hoshino et al.,
2013), with elevated ganglioside levels being present in the
brain and cerebrospinal fluid of AD patients. Similar results
were reported by Grey et al. (2015) for α-syn, showing that
both GM3 and GM1 accelerated its aggregation, while the
rest of the glycerophospholipids they tested slowed down the
aggregation. However, a study by Martinez et al. (2007) somewhat
contradicted these findings, showing that in fact GM1-containing
small unilamellar vesicles inhibited the formation of α-syn fibrils
by inducing and maintaining its α-helical conformation for both
wild-type and A53T mutant α-syn. Vesicles containing GM2
or GM3 gangliosides showed much weaker inhibitory effects.
These findings are in line with numerous studies showing that
treatment with GM1 improves both cognitive and motor deficits
in PD animal models and in PD patients (Hadjiconstantinou
et al., 1986, 1989; Schneider and Distefano, 1995;

Schneider et al., 1995, 2010, 2013). These findings will be
discussed more in detail below in “Lipids as Targets for
PD Treatment.”

Potential Mechanisms Leading to
Cytotoxicity Upon α-Synuclein
Lipid Binding
The observation that the concentrations of certain fatty acids
and more complex lipids can enhance α-syn aggregation and
toxicity suggest alternative therapeutic strategies that could be
undertaken to treat PD. Understanding why and how these lipids
augment cytotoxicity will allow for a deeper understanding of
the pathomechanism at play and will allow for more specific
and personalized treatment targets. One potential mechanism of
cytotoxicity is the disruption of lipid membranes. Fecchio et al.
(2013) showed that the toxicity of α-syn and DHA oligomers to
cells is due to the disruption of the integrity of lipid membranes.
Through their binding to negatively charged vesicle membranes,
the oligomers cause leakage of small molecules out of the vesicles
(MW 0.6 kDa). In dopaminergic SH-SY5Y cells, treatment
with α-syn and DHA oligomers increased the permeability to
propidium iodide (Fecchio et al., 2013). In oligodendroglial cells
overexpressing the α-syn mutation A53T, supplementation with
DHA followed by oxidative stress due to hydrogen peroxide led to
the formations of α-syn fibrils and a decrease in α-syn solubility.
Oligodendroglial cells expressing wild-type α-syn displayed the
same changes, therefore the effect is largely attributable to the
presence of DHA and/or oxidative stress (Riedel et al., 2011).
These results indicate that lipid membrane disruption may be
one of the mechanisms of toxicity of α-syn oligomers leading
to PD. Lipid membrane integrity is particularly important in
neuronal cells, as action potential firing is mediated by changes in
membrane potential regulated by voltage-gated channels, as well
as the maintenance of sodium and potassium gradients.

Another potential mechanism of induced cellular toxicity
due to the interaction of PUFAs with α-syn could be the
incorporation of the PUFAs themselves within the complexes,
as has been shown for DHA, which would sequester and
compartmentalize PUFAs thereby affecting their normal roles
within the cell (Broersen et al., 2006). Supporting this
hypothesis, Jenco et al. (1998) showed that α-syn inhibits the
activation of phospholipase D2 via PIP2, which hydrolyses
glycerophosphocholines to produce phosphatidic acid and
choline. Therefore, the incorporation of PUFAs within α-syn
aggregates could lead to toxicity by affecting PUFA metabolism
and organization within the cell membrane.

Binding of α-syn with lipids may also affect the normal
lipid function. A ganglioside-binding domain (GBD), which
has a marked preference for GM3, has been identified in
α-syn (Di Pasquale et al., 2010). One of the residues in this
domain is mutated in a familial form of PD (E46K). This
domain is structurally related to the glycosphingolipid-binding
domain shared by a variety of amyloid protein, including
β-amyloid peptide which is involved in the pathology of AD
(Di Pasquale et al., 2010). While the domain identified in α-syn
was found to interact with a number of glycosphingolipids, it
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had a distinct preference for the ganglioside GM3. The α-syn
mutant E46K was demonstrated to have a stronger affinity for
GM3 than the wild-type protein. When the E46K protein was
incubated with reconstituted glycerophosphocholine bilayers,
the channels formed were functionally impaired compared to
those formed by wild-type α-syn. When GM3 was present in
the reconstituted bilayers, this channelopathy was no longer
observed (Di Pasquale et al., 2010).

Taken together, it is clearly important to elucidate the
physiological role of α-syn in the normal brain as well as the
pathological role of mutant α-syn in PD in order to be able
to develop treatments that can impede the pathological aspects
while not affecting the physiological roles that are necessary for
neuronal function.

BINDING OF α-syn WITH
MITOCHONDRIAL MEMBRANES

Mitochondrial dysfunction has been shown to be involved in
PD pathogenesis, but the underlying mechanisms involved have
not yet been elucidated. Both genetic predisposition to PD
and environmental risk factors play roles in different aspects
of mitochondrial function, including bioenergetic capacity,
dynamic morphological changes during fission and fusion, and
transport (Kamp et al., 2010; Burte et al., 2015; Ryan et al.,
2015). The lipid environment within mitochondrial membranes
influence all of these processes as they determine membrane
curvature and structure, as well as affecting the recruitment
and activity of specific proteins (Aufschnaiter et al., 2017). The
role of dysfunctional mitochondria in the pathogenesis of PD
has been demonstrated in several models, including aging yeast
(Buttner et al., 2008), Drosophila (Greene et al., 2003), as well as in
Parkin-deficient transgenic mouse models (Palacino et al., 2004;
Shim et al., 2011).

As previously mentioned, α-syn can tightly interact with
various artificial membranes, but it associates much more weakly
with native membranes (George et al., 1995; Kahle et al., 2000).
Nakamura et al. (2008) reported that α-syn preferentially binds
to mitochondrial membranes in vivo while Guardia-Laguarta
et al. (2014) showed that in cell lines and in brain tissue
from mice and humans, wild-type α-syn was present specifically
in mitochondria-associated endoplasmic-reticulum membranes
(MAMs). The interaction between α-syn and these membranes
appears to initially require an anionic charge (Cole et al., 2008).
Cardiolipin, a mitochondrial-specific lipid, has a diphosphatidyl
glycerol headgroup which imparts an anionic charge to it.
By using artificial membranes with and without cardiolipin,
Nakamura et al. (2011) showed that this acidic phospholipid
is essential for interactions with α-syn. Quenching of the
anionic headgroup inhibits the association of α-syn with artificial
mitochondrial membranes (Cole et al., 2008). The acyl side
chains on cardiolipin induce negative curvature in mitochondrial
membranes and, along with the anionic headgroup, have been
reported to facilitate α-syn docking onto the membrane by
physically interacting with the N-terminal region of wild-type
α-syn (Grey et al., 2011; Zigoneanu et al., 2012; Ghio et al., 2016).

Interestingly, this interaction is bi-directional, as the absence of
α-syn dramatically reduces the concentration of both cardiolipin
and its precursor phosphatidylglycerol (Ellis et al., 2005;
Barcelo-Coblijn et al., 2007). Furthermore, there is an increase
in saturated fatty acids bound to the glycerol backbone of
cardiolipin in the absence of α-syn (Ellis et al., 2005).

As mentioned in Section “Pathological Aspects of α-synuclein
Lipid Binding,” acidic phospholipids have been reported to
facilitate α-syn aggregation (Davidson et al., 1998; Jo et al., 2000).
Contrary to this, Ryan et al. (2018) recently showed that in
human dopaminergic neurons, cardiolipin translocates to the
outer mitochondrial and here binds to both A53T and E46K
mutant α-syn, inducing it to take the α-helical conformation.
Furthermore, the cardiolipin in the outer mitochondrial
membrane pulled α-syn monomers from oligomeric fibrils and
enabled their refolding back into α-helices, thereby buffering
their aggregation and resultant pathological impacts (Ryan
et al., 2018). Interestingly, in fibrils composed of mutant
α-syn, this buffering capacity was reduced (Ryan et al., 2018).
While these results are inconsistent with reports from early
studies with regards to the interaction of acidic lipids with
α-syn, it is likely that the effects observed may be specific
to cardiolipin which is only found in mitochondria and
MAM. All previous studies had been performed on membranes
containing acidic phospholipids such as glycerophosphoinositols
and glycerophosphoethanolamines (Davidson et al., 1998;
Jo et al., 2000).

Aside from cardiolipin, GPE in mitochondria have also been
recently linked to α-syn toxicity. Knockout of the enzyme
which synthesizes GPE, phosphatidylserine decarboxylase Psd1
(mammalian Pisd), in yeast and worm models of PD was shown
to result in the formation of α-syn foci, ER stress, defects in
trafficking, and decreased respiration (Wang et al., 2014). The
addition of ethanolamine, which is converted to GPE by the
Kennedy pathway, was found to partially rescue these deleterious
effects – α-syn foci were decreased and ER stress was reduced, but
there was no influence on respiration (Wang et al., 2014).

To conclude, there is a close and bi-directional relationship
between cardiolipin in mitochondrial membranes and α-syn,
with changes in each one affecting the form or function of
the other and the resulting pathological interactions. Other
mitochondrial phospholipids, such as GPE, also appear to have an
effect on α-syn toxicity. Therefore, mitochondrial lipids present a
novel opportunity for the development of biomarkers and new
therapeutic strategies in PD.

THE INTERACTION OF α-syn WITH
LIPID RAFTS

Lipid rafts are microdomains in the plasma membrane that
are liquid-ordered and enriched in sphingomyelin, cholesterol,
and saturated fatty acid (SFAs), while having a low content of
PUFAs. They promote lipid-lipid and lipid-protein interactions
due to their highly saturated and liquid-ordered physicochemical
properties (Brown and London, 2000; Pike, 2003; Pike, 2009),
therefore playing a central role in intercellular communication
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and signal transduction. Alterations in lipid raft composition
have been associated with abnormal neuronal function and
neurotransmitter signaling (Allen et al., 2007; Marin et al., 2007;
Ferrer, 2009; Ramirez et al., 2009).

A recent study monitored the conformational changes of
α-syn upon binding to gel and liquid-ordered phases, specifically
in the presence of glycerophosphocholine (O’Leary et al., 2018).
The authors observed that the α-helical conformation of the
protein was lost as the lipid phase transitioned from gel to fluid in
zwitterionic membranes, while N-acetylation increased α-helicity
in the presence of their immediate metabolites and precursors the
lysophosphocholines, which lack a long-chain fatty acyl group
at the sn-1 or sn-2 position. N-acetylation is a common post-
translational modification of proteins in eukaryotes, and N-acetyl
α-syn was reported to be the predominant form in brains of
both healthy controls and PD patients (Anderson et al., 2006).
There have been conflicting reports regarding the impact of
N-acetylation on α-syn lipid binding. NMR studies showed that
N-acetyl α-syn bound more strongly to the membrane (Maltsev
et al., 2012; Dikiy and Eliezer, 2014), while one study reported
no effect (Fauvet et al., 2012). Galvagnion and colleagues showed
that α-syn aggregation in the presence of anionic phospholipids
is also affected by membrane fluidity, with different aggregation
propensities for saturated versus unsaturated lipid membranes
(Galvagnion, 2017). These results suggest that ordered regions
in biological membranes, such as lipid rafts, serve as locations
for α-syn aggregation. Further supporting this, the localization
of α-syn to synaptic terminals appears to be mediated by the
presence of lipid rafts (Fortin et al., 2004) and complexing
with small glycerophosphocholine seconds messengers (Wislet-
Gendebien et al., 2008). More specifically, Fortin and colleagues
found that the PD-associated α-syn mutation A30P blocked
α-syn interaction with lipid rafts, suggesting a role of lipid rafts
in the normal localization and consequent function of α-syn.

Further supporting the potential role of lipid rafts and
their interaction with α-syn in the pathogenesis of PD,
Fabelo et al. (2011) reported that lipid rafts isolated from
the frontal cortices of patients with PD displayed profound
lipid alterations compared to healthy controls. Plasmalogen,
sulfatide, and cerebroside levels were greatly decreased in PD,
whereas glycerophosphoserine and glycerophosphoinositol were
higher (Fabelo et al., 2011). The deficiency of sulfatides and
cerebrosides has been previously linked to the accumulation
of ceramide, as this is formed by hydrolysis of sulfatides and
cerebrosides. Increased ceramide levels have many deleterious
effects, including disruption of the mitochondrial respiratory
chain, upregulation of cytokines, and apoptosis (Hannun and
Luberto, 2000). The depletion of sulfatides and consequent
increase in ceramide levels has also been associated with
the neurodegeneration seen in AD using unbiased lipidomic
approaches (Cheng et al., 2003). However, it has been
hypothesized that in PD, decreased ceramide levels are potentially
pathogenic and have been reported to be decreased in post-
mortem brain tissue of PD patients (Bras et al., 2008;
Abbott et al., 2014). One potential explanation is that while
levels of ceramide may be decreasing overall, there is a
mechanism that attempts to maintain their levels in lipid

rafts specifically. This hypothesis clearly requires subcellular
fractionation and lipidomic assessment to monitor site-specific
lipid metabolism.

Perturbations in the association of α-syn with lipid rafts may
have a role to play in PD pathogenesis. More generally, fluid lipid
membranes (liquid disordered and liquid crystalline) appear to
play a role in preventing α-syn aggregation and maintaining its
homeostasis, while perturbations in the lipid balance could be
a PD risk factor.

THE ROLE OF α-syn IN
LIPID METABOLISM

α-syn has been shown to play a role in a number of different lipid
metabolic pathways, with significant consequent implications for
its toxicity. Willingham et al. (2003) conducted a genome-wine
screening study in yeast which supports the involvement of lipid
metabolism in α-syn toxicity. The authors found that 18 out of
57 genes which modified the toxicity of α-syn were related to
lipid metabolism and vesicle-mediated transport. Here we will
describe the lipid pathways that α-syn has been implicated in thus
far (see Figure 2 for summary of the role α-syn in lipid uptake
and metabolism).

α-Synuclein Involvement in Fatty Acid
Uptake and Metabolism
There is accumulating evidence that α-syn plays an important
role in fatty acid uptake and metabolism which is specific for
different fatty acids. In astrocytes isolated from α-syn gene-
ablated mice, the uptake of [1-14C] labeled palmitic acid (16:0)
and [1-14C] labeled ARA [20:4(n-6)] were significantly decreased
(Golovko et al., 2005, 2006). α-Syn deficiency decreased the
rate of incorporation of both palmitic acid and ARA into a
number of different glycerophospholipid classes, an observation
that was brain specific as no changes were seen in the
liver (Golovko et al., 2005, 2006). A similar experiment
was performed with labeled DHA which demonstrated that
although α-syn deficiency did not affect the uptake of this fatty
acid, there was an increase in the rate of incorporation and
turnover of glycerophosphoinositol, glycerophosphoserine, and
glycerophosphoethanolamine pools (Golovko et al., 2007). This
effect is opposite that reported for palmitic acid and ARA and
therefore suggests a compensatory mechanism in maintaining
critical levels of glycerophospholipids in cells.

α-syn Involvement in Triacylglycerol and
Cholesterol Metabolism
Mutant α-syn was also recently implicated in the metabolism
of TAGs. It was observed that the overexpression of A53T
α-syn led to an increase in the levels of TAGs which was
accompanied by enhanced activity of acyl-CoA synthetase,
which catalyzes the formation of fatty acyl-CoA that serve
as substrates in β-oxidation and glycerophospholipid and
sphingolipid biosynthesis (Sanchez Campos et al., 2018). This is
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FIGURE 2 | Schematic representation of the role of α-synuclein in lipid uptake and metabolism. α-syn deficiency inhibits the uptake of palmitic acid and arachidonic
acid and their further metabolism into glycerophosphocholine, while there is an increase in the incorporation of docosahexaenoic acid into
glycerophosphoethanolamine, glycerophosphoinositol, and glycerophosphoserine. The absence of α-syn also reduces levels of phosphatidylglycerol and cardiolipin
in mitochondria. Mutant α-synuclein has been shown to enhance the activity of acyl-CoA synthetase and lead to an increased generation of triacylglycerols, while
wild-type α-synuclein may inhibit phospholipase D2, which hydrolyzes glycerophospholipids into diacylglycerols and phosphatidic acid. DAG, diacylglycerol; FA, fatty
acid; GPC, glycerophosphocholine; GPE, glycerophosphoethanolamine; GPI, glycerophosphoinositol; GPS, glycerophosphoserine; TAG, triacylglycerol.

an interesting metabolic switch that could be used to monitor the
onset of α-syn aggregation and consequent neurodegeneration.

α-syn deficiency has also been shown to impact cholesterol
metabolism in brain and astrocytes, with cholesteryl esters and
cholesterol being significantly elevated (Castagnet et al., 2005;
Barcelo-Coblijn et al., 2007). This is an important finding
with regard to PD pathology, as mature neurons depend on
cholesterol synthesized and exported from astrocytes (Poirier
et al., 1993; Dietschy and Turley, 2004), and when this is
lacking neurons cannot form synapses in culture (Pfrieger, 2003)
and presynaptic transmitter release is significantly decreased
(Nagler et al., 2001).

α-syn Effect on Phospholipase Activity
A number of reports confirm that α-syn interacts with and
affects the activity of phospholipase D (PLD), but there is some
divergence in the findings. PLD forms phosphatidic acid (PA)
and diacylglycerol (DAG) by catalyzing the hydrolysis of head
groups from glycerophospholipids (Tsai et al., 1989; Bocckino
et al., 1991; Bauldry et al., 1992; Zhao et al., 1993; Ktistakis
et al., 1995). Two isoforms of PLD, PLD1 and PLD2, have
been characterized in most cell types and tissues. PLD1 has
low basal activity (Hammond et al., 1995; Hammond et al.,
1997), while PLD2 is more active and is insensitive to further

stimulation by known PLD1 activators (Colley et al., 1997). It was
hypothesized that PLD2 activity was attenuated by an unknown
inhibitory factor. Jenco et al. (1998) attempted to describe this
factor by purifying a protein that selectively inhibited PLD2
and through sequencing and immunological analysis found
that this protein was a mixture of α- and β-synucleins. Later
on, Gorbatyuk et al. (2010) showed that overexpressing PLD2
(gain of function) leads to loss of dopaminergic neurons in the
striatum and neurodegeneration of the substantia nigra, and
that α-syn co-expression suppressed PLD2 toxicity. However,
in vitro α-syn showed no inhibitory function on the activity
of PLD. Using a variety of systems and approaches, including
purified proteins, PLD transfection in a number of mammalian
cell lines, as well as a yeast system, Rappley et al. (2009) reported
no significant inhibition of PLD by α-syn. Conversely, it has
been reported that reducing PLD1 expression or inhibiting its
enzymatic activity (loss of function) compromised the clearance
of α-syn aggregates (Bae et al., 2014). Furthermore, the authors
showed decreased PLD1 expression (loss of function) in the
brains of patients with Lewy body dementia. Conde et al. (2018)
recently showed that the overexpression of wild-type α-syn in
human neuroblastoma cells inhibited the expression of PLD1
and affected ERK1/2 signaling, which appeared to alter the actin
cytoskeleton and reduce the neurofilament light chain. These
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results raise the possibility that the modulation of both PLD1
and PLD2 activities is involved in the pathomechanism of PD
and suggests that the level and modification of α-syn may affect
these activities by controlling the cleavage of membrane lipids
and membrane biogenesis.

Lipid homeostasis is fundamental in maintaining normal
cellular functions. α-Syn appears to play a role in modulating
many aspects of lipid metabolism ranging from fatty acid uptake
to inhibition of enzyme activity. Therefore, the dysregulation of
brain lipid metabolism by α-syn may play an important role in
propagating PD pathology.

LIPID PATHWAY ALTERATIONS IN
PARKINSON’S DISEASE

Understanding changes in lipid levels in brain areas both
involved in PD and those spared, along with those in the
periphery could elucidate novel pathways involved in PD
pathogenesis as well as identify potential biomarkers for diagnosis
and therapeutic monitoring (see Figure 3 for summary of lipid
pathway alterations in PD).

Lipid Changes in Animal Models of PD
Animal models of disease are one of the most important tools
available for elucidating the cellular and molecular changes that
happen and should reflect the changes observed in humans.
Generally, information regarding lipid changes in animal models
of PD is minimal. Farmer and colleagues used high performance
liquid chromatography coupled with mass spectrometry to
profile the sphingolipids and glycerophosphocholines in the
substantia nigra of a 6-OHDA-induced mouse model of PD
(Farmer et al., 2015). They found that 17 glycerophosphocholine
and lysophosphocholine (LPC) species were significantly reduced
in these mice. Interestingly, LPC(16:0/0:0) and LPC(18:1/0:0)
were increased in the 6-OHDA-treated mice. These two
LPC species were also found to be increased in human
fibroblasts deficient in Parkin (Lobasso et al., 2017). As
mentioned, mutations in the Parkin gene are well-known
causes of PD and induce defects in mitochondria and
dysfunctional autophagy. Lobasso et al. (2017) examined how
Parkin mutations in primary human skin fibroblasts affected
the lipidome of these cells. They reported that the Parkin-
mutant fibroblasts had higher levels of glycerophosphoserine,
glycerophosphoinositol, gangliosides GM2 and GM3, as well
as LPC(18:1/0:0) and LPC(16:0/0:0) (Lobasso et al., 2017).
It has been shown that these two species play a role in
inflammatory signaling, and inflammation has been shown
to be involved in PD pathogenesis (Cunningham et al.,
2008), while the higher levels of glycerophosphoinositol and
glycerophosphoserine may cause defects in mitochondrial
turnover (Lobasso et al., 2017).

Lipidomic Analysis of Pathological Lipid
Changes in PD Patient Brains
Lipidomic analysis has the capability of offering a large-
scale picture of lipid changes and elucidating network-wide

effects. Using liquid-chromatography mass spectrometry,
Wood et al. found that DAGs, with both monounsaturated
and polyunsaturated hydrocarbon chains, are increased
in the frontal cortex of PD patients (Wood et al., 2018).
The greatest elevations were observed in the cohort
with the most severe cortical neuropathology (subjects
with moderate to frequent neocortical neuritic plaques).
Wood et al. also reported a significant decrease in
the levels of phosphatidic acid 16:0 in all three PD
subgroups. DAGs are essential for the synthesis of
glycerophospholipids and as second messengers in the
nuclear lipid signaling pathway. DAG levels are tightly
controlled by DAG kinase which converts DAGs to
phosphatidic acids (Evangelisti et al., 2006). Therefore, the
elevated DAGs and lower levels of lysophosphatidic acid
suggest that there may be a dysfunction in the DAG kinase
regulation of DAG steady-state levels in proteinopathies
(Wood et al., 2018).

Using a case-control approach to analyze the comprehensive
sphingolipidome, Abbott and colleagues analyzed the
postmortem brain tissue from the ACC and from the occipital
cortex (Abbott et al., 2014). While the ACC showed Lewy
body pathology starting at Braak stage IV, the occipital cortex
did not show any PD-related pathological changes. In the
ACC of PD patients, total ceramide and sphingomyelin
levels were approximately half of those in controls. These
changes were not seen in the occipital cortex. Furthermore,
a significant shift in the acyl chain composition of both
ceramides and sphingomyelins toward shorter acyl chains
(C16:0, C18:0, and C18:1) in the ACC was observed. Changes
in fatty acyl chain lengths of ceramides have been shown
to affect apoptotic pathways, mitochondrial function,
and membrane order (Ben-David and Futerman, 2010;
Grosch et al., 2012), which are all factors that play a role
in PD pathology.

In a broader and somewhat contradicting lipidomic analysis
of the occipital cortex in sporadic PD cases, significant changes
in 79 sphingolipid, glycerophospholipid, and cholesterol species
were detected compared to controls (Cheng et al., 2011).
Six out of seven oxysterols analyzed were also increased
in the PD visual cortex. This is an interesting finding, as
it indicates that changes in lipid metabolism are occurring
in the occipital cortex, although this is a brain region
which is spared in PD, including the absence of Lewy
bodies. The occipital cortex may therefore represent a novel
therapeutic target for treating symptoms such as visual
hallucinations in PD patients.

Changes in more complex sphingolipids, specifically
gangliosides, have also been observed in PD. One study
showed a trend of higher GM2 and GM3 in the putamen
of PD brains compared to controls (Gegg et al., 2015). Of
note, GM1 showed the opposite trend, with significantly
lower levels observed in PD patients compared to non-PD
controls (Wu et al., 2012). While lipidomic mass spec analysis
does not exist for GM1 levels, immunohistochemical staining
specific for GM1 of the substantia nigra showed lower levels
in both dopaminergic and non-dopaminergic neurons in PD
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FIGURE 3 | Overview of lipid biosynthetic and metabolic pathways indicating lipid changes which have been observed in Parkinson’s disease. Fatty acid
biosynthesis begins with the conversion of acetyl-CoA to malonyl-CoA. The repeated condensation of these two fatty acyl-CoA’s results in palmitic acid, which is 16
carbons long and fully saturated. Monounsaturated fatty acids are then formed by the introduction of a double bond at carbon 9. PUFAs are generated by further
desaturations and elongations. Glycerophospholipids result from the condensation of both saturated and unsaturated fatty acids with glycerol-3-phosphate. For the
formation of sphingolipids, fatty acids require activation to acyl-CoA’s which then undergo condensation with serine. The attachment of various head groups like
phosphocholine and hexosyl moieties gives rise to sphingomyelin and hexosyl-ceramides, respectively. Gangliosides are formed by the addition of a sialic acid to
lactosyl-ceramides for GM3, as well as N-acetylgalactosamine to generate GM1 and GM2. Arachidonic acid, one of the two most enriched polyunsaturated fatty
acids in the human brain, is used in the synthesis of HETE and other eicosanoids. For cholesterol synthesis, acetyl-CoA is first converted to acetoacetyl-CoA,
followed by addition of another acyl group to form HMG-CoA. This is then processed into mevalonate, which through a number of subsequent reactions becomes
cholesterol. Lipidomics methods employing liquid chromatography mass spectrometry have been able to reveal many lipid alterations in cells, post-mortem brain
tissue and plasma from patients with PD which in the future could be developed for use as prognostic and diagnostic biomarkers. CDP-DAG, cytidine
diphosphate-diacylglycerol; FA, fatty acid; HETE, hydroxyeicosatetraenoic acid; HMG-CoA, 3-methylglutaryl-3-hydroxy-CoA; GPC, glycerophosphocholine; GPE,
glycerophosphoethanolamine; PG, phosphoglycerol; GPI, glycerophosphoinositol; GPS, glycerophosphoserine.

patients versus non-PD controls (Wu et al., 2012). GM1 plays
a direct role in regulating calcium homeostasis (Shield et al.,
2006) as well as in promoting the integrity of lysosomes (Wei
et al., 2009). Furthermore, as discussed already, GM1 prevents
the aggregation of α-syn by maintaining its helical conformation
(Martinez et al., 2007).

Lipidomic Analysis of Pathological Lipid
Changes in the Plasma Lipidome of
PD Patients
All of the lipid alterations mentioned in this section have
been observed in different postmortem brain tissues. For these
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changes to be ultimately useful as biomarkers, the peripheral
lipidome should reflect these variations in PD patients. Chan
et al. reported elevated levels of GM3 in plasma of PD
patients (Chan et al., 2017), which is in line with the observed
trends in PD brain compared to controls seen by Gegg
et al. (2015), which was mentioned earlier. Mielke et al.
(2013) measured levels of ceramide, monohexosylceramides, and
lactosylceramides in cognitively normal PD patients, cognitively
impaired PD patients, and controls and found that levels of
all the lipids in the subclasses described were increased in PD
patients, with most ceramide and monohexosylceramide species
being higher in those with cognitive impairment compared
to those without. As will be discussed in more detail in the
following section, mutations in the GBA gene which encodes
for glucocerebrosidase are strongly associated with PD. A large
recent study analyzing the serum lipid levels in 415 PD
patients with or without mutations in GBA reported that
monohexosylceramides, ceramides, and sphingomyelins were
higher in patients with GBA mutations (Guedes et al., 2017). Of
note, this study did not include healthy controls in their analysis.
These findings indicate that these lipids play an important role in
the pathogenesis of PD, as they were reported to be higher also in
patients without GBA mutations. Furthermore, PD patients with
these mutations are more likely to develop PD earlier in life and
to experience dementia and cognitive impairment (Neumann
et al., 2009; Brockmann et al., 2011), which could potentially
be explained by the accumulation of even higher levels of these
lipids in these patients. The next section will discuss mutations in
this gene in detail.

Lipidomic Analysis of Potentially
Protective Lipids
Lipidomic analysis tools are not only of use in identifying
pathological markers, but also for determining potentially
protective lipids. A number of case-control studies have
suggested that higher levels of serum cholesterol could be
related to a lower prevalence of PD (Scigliano et al., 2006;
Miyake et al., 2010). This hypothesis was further supported
by three independent prospective studies (de Lau et al., 2006;
Simon et al., 2007; Huang et al., 2008), although de Lau and
colleagues reported that this association only held true for women
but not for men. A recent study following 261,638 statin-free
individuals over time also showed that higher levels of both
total and low-density lipoprotein cholesterol corresponded with
a decreased risk of PD among men (Rozani et al., 2018). Another
study which analyzed the data obtained from the Deprenyl and
Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP)
trial reported that higher serum cholesterol levels were associated
with a slower rate of PD clinical progression (Huang et al.,
2011). These findings are in line with an early study by Musanti
et al. (1993) showing that fibroblasts from PD patients could
only incorporate approximately one quarter of the levels of 14C-
acetate into cholesterol as control fibroblasts, with cholesterol
esterifying activity being reduced by half (Musanti et al., 1993).
However, a study based on a Finnish National Insurance Register
contradicted the above findings and reported that high total

cholesterol is associated with an increased risk of PD in the future
(Hu et al., 2008).

Systems based approaches such as lipidomics can be
very useful for generating novel hypotheses with regards to
pathomechanistic changes in complex diseases. However, one
of the challenges that arise with such encompassing data is
determining which changes are relevant to the pathology of the
disease and not simply natural variations between patients. What
the data concerning lipid pathways in PD allows us to conclude
thus far is that the changes are lipid species specific, and not
just lipid class-related, indicating the importance of analyzing
individual lipid species and not just the lipid classes as a whole.
Interestingly, lipid changes in the peripheral lipidome of PD
patients also generally correspond with changes seen in the brain.
This is a promising early step for the development of sensitive and
specific biomarkers which can quickly allow for the diagnosis or
therapeutic monitoring of PD.

MUTATIONS IN GBA PROMOTE TOXIC
CONVERSION OF α-SYNUCLEIN

Mutations in the GBAgene, which encodes the lysosomal enzyme
GCase, have been shown to be strongly associated with PD and
are the most common risk factor for PD and DLB, found in
25% of all DLB and greater than 10% of PD patients (Clark
et al., 2010; Tsuang et al., 2012) GCase produces ceramide
and sphingosine by hydrolyzing glucosylceramide (GlcCer) and
glucosylsphingosine (GlcSph), respectively. GCase activity is
moderately reduced to 58% of normal levels in GBA carriers
with PD and 67% of normal levels in sporadic PD patients
(wild-type GBA) suggesting a common pathology accelerated by
genetic predisposition (Gegg et al., 2012). However, reduction
of GCase activity alone is not sufficient to enhance PD risk,
further indicating that precise lipid composition is critical to
promote cognitive decline. GBA mutations, for example, are
also the genetic determinant of Gaucher Disease. In Gaucher
disease, homozygous GBA mutations reduce GCase activity to
<15% of normal function. Yet, only a small subset of Gaucher
patients develop PD or DLB (Sidransky, 2012). Moreover, it is
only the moderate reductions (as are seen in PD and DLB,)
and not the severe reductions in GCase activity (as are observed
Gaucher disease), that increase α-syn levels in vitro as detected
in post-mortem PD brain tissue (Murphy et al., 2014; Kim et al.,
2018). The loss of GCase activity has also been measured in the
cerebrospinal fluid and blood of PD patients (Alcalay et al., 2015;
Parnetti et al., 2017).

The exact pathomechanism by which GCase dysfunction
increases the risk of PD still remains elusive, although
there have been a number of mechanisms proposed. One
proposed hypothesis is a gain-of-function mechanism by which
dysfunctional GCase directly interacts with α-syn, promoting its
aggregation and accumulation (Sidransky and Lopez, 2012). This
hypothesis is supported by the finding that most mutant GBA
alleles result in a misfolded protein whose new confirmation
could promote the aggregation of α-syn. The misfolded protein
could also impair autophagy and cause lysosomal dysfunction
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(Sidransky and Lopez, 2012). Using an ELISA assay, Cullen
et al. showed that an increase in α-syn levels was contingent
on the levels of mutant GBA, but not on the activity (Cullen
et al., 2011). Semi-quantitative Western blotting showed a
reciprocal relationship between decreased GCase and increased
α-syn levels (Gegg et al., 2012; Murphy and Halliday, 2014).
However, some GBA mutations which have been identified in
patients with PD are null mutations, which conflicts with this
hypothesis. Additionally, carriers of the null allele may actually
have a higher risk of developing PD (Gan-Or et al., 2009).
Furthermore, as indicated above, patients with Gaucher disease
with homozygous mutations in GBA1 exhibit an even lower level
of GCase activity, although most of them never develop PD
(Rosenbloom et al., 2011).

An alternative proposed mechanism is that loss of GCase
function leads to accumulation of its substrates, thereby affecting
α-syn aggregation and clearance (Mazzulli et al., 2011; Westbroek
et al., 2011; Sidransky and Lopez, 2012; Taguchi et al., 2017).
Suzuki et al. (2015) knocked down the Drosophila homolog of
GBA1 (dGBA1) and found that this accelerated the accumulation
of proteinase K (PK)-resistant α-syn, which correlated with
phenotype severity. GlcCer, a substrate of GCase composed of
multiple molecular species, was furthermore shown to directly
promote the production of PK-resistant α-syn (Suzuki et al.,
2015). Gundner et al. (2018) showed that increased GlcSph
levels, another substrate of GCase, mediated an increase in
the ratio between α-syn phosphorylated at Serine-129 and total
α-syn in the substantia nigra. The phosphorylation of α-syn
at residue Ser129 has been correlated with the severity of PD
pathology (Lue et al., 2012; Walker et al., 2013), with more
than 90% of α-syn in Lewy bodies being phosphorylated at
this residue (Fujiwara et al., 2002; Anderson et al., 2006).
Using path analysis to define six hypothetical models for
describing the impact of GCase and α-syn on PD status,
the authors showed that GlcSph is not the only mediator
according to the model, with changes in glucocerebrosidase
also promoting α-syn accumulation via alternative mechanisms
(Gundner et al., 2018). Using a Gaucher’s disease mouse
model with a knock-in point mutation (D409V/D409V), Sardi
et al. (2011) reported that α-syn accumulation was more
closely correlated with the levels of glucosylsphingosine than
glucosylceramide, and that these mice developed a corresponding
memory deficit. The authors could reverse this deficit by
administering recombinant GCase directly into the brain.
However, neuropathological changes were observed in both
the D409V homozygote and heterozygote mice. This suggests
that GCase activity and consequent substrate accumulation
do not fully explain α-syn aggregation. In a Gaucher mouse
model homozygous for V394L or D409H, crossed with mice
deficient in the peptide saposin C, a co-factor necessary for
GCase activation, α-syn aggregated in cortical neurons, but
this did not correlate with glucosylceramide accumulation
(Xu et al., 2011). Lastly, Gegg et al. (2012) reported that
there was no accumulation of either GlcSph or GlcCer in
the putamen or cerebellum of patients with heterozygous
mutations in GBA. These findings all weaken the loss-of-
function hypothesis.

The third hypothesis represents a bi-directional feedback
loop between GCase and α-syn, where oligomeric α-syn
interferes with GCase trafficking and activity, which further
exacerbates α-syn pathology (Mazzulli et al., 2011). Mazzulli et al.
(2011) demonstrated that functional loss of GCase activity by
GCase shRNA-mediated knock-down causes the accumulation
of α-syn and results in aggregation-dependent neurotoxicity in
dopaminergic neurons derived from induced pluripotent stem
cells (iPSCs). The α-syn aggregation was not accompanied by a
change in mRNA levels, suggesting that the increased protein
levels were due to impaired degradation. They furthermore
showed that the lysosomal activity of GCase in neurons and
the brains of patients with sporadic PD was inhibited by
α-syn, indicating the presence of a positive feedback loop that
could perpetually propagate the disease. Further supporting this
hypothesis, it was recently demonstrated that the abundance of
aggregates of a newly identified high molecular weight α-syn
(24 kDa) linearly correlated with the loss of GCase function
(Brekk et al., 2018).

These three hypotheses, however, do not consider the
crosstalk between GCase and other enzymes involved in lipid
metabolism. Recent reports suggest that there is constructive
interference between GCase and β-Gal activity contributing to
α-syn aggregation and toxicity in PD. Schondorf et al. (2014)
reported that neurons derived from PD patient iPSCs had both
decreased GCase activity and a reduced β-Gal activity, which
were both rescued using a zinc-finger nuclease-mediated gene
correction. Further supporting this novel hypothesis, patients
with β-galactosialidosis, another lysosomal storage disorder,
who have a deficiency in β-Gal activity have been reported
to have α-syn accumulation in the brain (Suzuki et al., 2007;
Hamano et al., 2008).

These data lead us to hypothesize that an individual’s lipid
metabolic response to GBA mutations, possibly influenced by
diet, drives cognitive decline and disease risk. This alternate
“metabolic” hypothesis is further strengthened by evidence that
the p.L302P loss of function mutation in SMPD1 increases risk
of PD in persons of Ashkenazi Jewish and Chinese Han ancestry
(Gan-Or et al., 2013; Dagan et al., 2015; Mao et al., 2017). SMPD1
encodes for lysosomal acid sphingomyelinase (SMase) which
hydrolyzes sphingomyelins to ceramides and phosphocholine.
Finally, GALC encodes galactosylceramidase (GalC) responsible
for the hydrolysis of galactosylceramides (GalCers) to galactose
and ceramides (Kobayashi et al., 1986). Again, loss of enzymatic
function increases α-syn aggregation and accumulation in human
cells and experimental murine models (Xu et al., 2011; Bae
et al., 2015). This indicates that underlying metabolic differences
in ceramide homeostasis modulate susceptibility and resilience
to the loss of function of these and other lysosomal enzymes.
The critical lipid players in this hypothesis are the ceramides.
Intriguingly, the Krainc laboratory has elegantly demonstrated
that the α-syn accumulation associated with GBA loss of function
can be prevented in vitro by restoring Cer(d18:1/18:0)2 levels to
baseline (Kim et al., 2018). Cer(d18:1/18:0) levels fall following

2Lipid nomenclature describes the molecular identity of each sphingolipid as
follows: Cer refers to a lipid within the ceramide family. d18:1 refers to a ceramide
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GCase inhibition in vitro (Kim et al., 2018). This decline is
further compounded when Cer(d18:1/18:0 )is hydrolyzed to
sphingosine and stearic acid (18:0) by lysosomal acid ceramidase
(ASAH1). Inhibition of the lysosomal acid ceramidase activity, in
the presence of GCase impairment, rescues ceramide levels and
prevents α-syn accumulation in vitro (Kim et al., 2018). These
data help to reconcile genetic evidence that not all carriers of
risk-associated GBA or SMPD1 mutations develop PD, PDD, or
DLB (Schlossmacher et al., 2017). Building on this hypothesis,
we suggest that an individual’s sphingolipid metabolome confers
susceptibility (or resistance) to PDD and DLB phenoconversion
via molecular modulation of ceramide homeostasis. Clearly,
testing this hypothesis will require mapping of disease-specific
metabolic impairments and interventions designed to restore
metabolic homeostasis.

OTHER PD GENETIC RISK FACTORS
ASSOCIATED WITH LIPID METABOLISM
AND TRAFFICKING

In addition to the genes reviewed above, a number of loci in other
genes associated with normal lipid function, metabolism, and
trafficking (Manzoni and Lewis, 2013; Clague and Rochin, 2016)
have been identified to increase the susceptibility of developing
PD (Klein and Westenberger, 2012; Nalls et al., 2014).

PLA2G6
Mutations in pleiotropic lipid regulators involved in sphingolipid
and glycerophospholipid metabolism, PLA2G6, have been
found to cause levodopa-responsive parkinsonism with dystonia
(Doherty and Hardy, 2013). PLA2G6-associated PD is caused
by the homozygous or compound heterozygous inheritance
of various missense mutations in this gene (Paisan-Ruiz
et al., 2009; Sina et al., 2009; Yoshino et al., 2010). The
PLA2G6 gene encodes for calcium-independent phospholipase
(iPLA2) which catalyzes the hydrolysis of fatty acids from
glycerophospholipids (Baburina and Jackowski, 1999; Barbour
et al., 1999). PLA2G6 knockout in Drosophila resulted in
mitochondrial dysfunction, increased lipid peroxidation, and
neurodegeneration, and fibroblasts from a patient with the PD-
associated p.R747W mutation showed similar mitochondrial
impairment (Kinghorn et al., 2015). Furthermore, it has been
shown that activation of PLA2G6 promotes the hydrolysis of
sphingomyelins by neutral sphingomyelinase, thereby resulting
in increased levels of ceramides (Lei et al., 2007). Therefore,
mutations in PLA2G6 reducing its activity would lead to
lower ceramide levels, once again linking an impaired ceramide
metabolism with the development of PD.

SCARB2
The SCARB2 locus was also found to be associated with PD by
Simon-Sanchez et al. (2009), which was later confirmed by two
other genome wide association studies (GWAS) (Do et al., 2011;

with a sphingosine backbone. 18:0 refers to a particular molecular species with an
N-acyl hydrocarbon chain of 18 carbons and no unsaturations (:0).

Nalls et al., 2014). This gene encodes a GCase receptor called
lysosomal membrane protein 2 (LIMP-2) which is responsible for
directing GCase to lysosomes (Redensek et al., 2017). A deficiency
in LIMP-2 can cause a decrease in GCase activity and in the
degradation of α-syn (Gan-Or et al., 2015), and could therefore
potentially lead to a decrease in ceramide levels, lending yet more
support to this hypothesis.

SREBF1
The SREBF1 locus was first found to be associated with PD
susceptibility in 2011 through a genome wide association study
(Do et al., 2011), which was then confirmed by Nalls et al.
(2014) by the meta-analysis of GWASs. Using a genome-wide
RNAi screen to identify genes involved in the regulation of the
PINK1/Parkin pathway, Ivatt et al. (2014) further showed that
SREBF1 is involved in regulating the autophagic degradation of
mitochondria, known as mitophagy.

SREBF1 encodes sterol regulatory element-binding protein
1 (SREBP-1), which is a transcriptional factor involved in
lysosomal lipid accumulation. Gan-Or et al. (2015) reported
that reduced SREBF1 expression downregulates the NPC1 genes
and leads to the accumulation of cholesterol in lysosomes
and late endosomes. As mentioned, SREBF1 also plays a role
in mitophagy. Knockdown of SREBF1 was found to decrease
mitophagy by blocking the translocation of Parkin into the
mitochondria (Gan-Or et al., 2015), and this effect could be
rescued by the addition of exogenous cholesterol and fatty acids.
Ivatt and Whitworth (2014) added on to these results by looking
upstream of Parkin translocation. PINK1 becomes stabilized
on the outer mitochondrial membrane upon injury to the
mitochondria, and chemical inhibition or silencing of SREBF1
resulted in decreased PINK1 stabilization (Ivatt and Whitworth,
2014). These findings suggest that genetic variation at the SREBF1
locus may affect its expression and could consequently lead
to reduced PINK1 stabilization on the outer mitochondrial
membrane and disrupted mitochondrial homeostasis. Addition
of exogenous lipids showed a trend toward rescuing PINK1
stabilization (Ivatt and Whitworth, 2014). Although none of the
differences seen were statistically significant, these results indicate
that lipid synthesis could potentially play an important role in
mitochondrial homeostasis, and dysregulation of lipid metabolic
pathways could promote PD pathogenesis.

DGKQ
Diacylglycerol kinase theta (DGKQ) has been suggested as a
susceptibility gene for PD in an early GWAS study (Pankratz
et al., 2009), with two additional GWASs providing further
support for its involvement in PD (Simon-Sanchez et al., 2009;
UK Parkinson’s Disease Consortium et al., 2011). Diacylglycerol
kinases are responsible for phosphorylating phosphatidic acid,
thereby producing DAG. As described in an earlier section,
DAG levels were found to be elevated in PD patients without
specifically reported mutations, indicating that dysfunction in
DAG kinase is involved in PD pathology irrespective of the
presence of a mutation. This is in line with a number of reports
that DAG is implicated in directly promoting the oligomerization
of α-syn as well as being involved in glycerophosphoinositol
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turnover and lipid signaling. Furthermore, diacylglycerol kinases
have been demonstrated to affect the trafficking and fusion of
vesicles at synaptic terminals (Merida et al., 2008).

These reports suggest that it may be worthwhile to consider
other genes pertaining to enzymes involved in lipid metabolism
as not only risk factors for PD, but also as clues to deciphering the
full involvement of lipids in the pathogenesis of this disease.

LIPID DYSREGULATION LEADING TO
OXIDATIVE STRESS AND
INFLAMMATION IN
PARKINSON’S DISEASE

There is increasing evidence that oxidative stress and
inflammatory processes play a role in the pathogenesis of
PD (Beal, 2003; Jenner, 2003; McGeer and McGeer, 2004;
Abou-Sleiman et al., 2006; Schapira, 2008; Hirsch and Hunot,
2009; Hirsch et al., 2012; Joshi and Singh, 2018). Oxidative
stress is characterized by an increase in reactive oxygen species
(ROS) which overpower antioxidant mechanisms and result in
cytotoxicity (Halliwell, 2006). The mitochondrial respiratory
chain, uncontrolled ARA cascade, and NADPH oxidase are the
major sources of ROS, utilizing molecular oxygen to produce
ROS. Hydroxyl radicals are also produced during these processes
through the Fenton reaction. These radicals can then form
peroxyl radicals (ROO•) by attacking polyunsaturated fatty
acids in membrane glycerophospholipids, propagating the lipid
peroxidation chain reaction (Farooqui, 2010b).

Markers of oxidative damage such isoprostanes,
hydroxyeicosatetraenoic acid products (HETEs), and
cholesterol oxidation products were found to be increased
in PD patients compared to controls. The same authors also
reported that the enzymatic activities of platelet activating
factor-acetylhydrolase (PAH-AH) were significantly lower
in PD patients (Seet et al., 2010). This is of importance, as
PAF-AH is inhibited by oxygen radicals (Ambrosio et al.,
1994). A number of other lipid peroxidation markers,
including isofurans, 4-hydroxy-trans-2-nonenal (4-HNE),
and 4-oxo-trans-2-nonenal (4-ONE) have also been reported
to be significantly increased in PD patients compared to
controls (Farooqui and Farooqui, 2011). These metabolites
are derived from ARA, which as mentioned earlier is
released from glycerophospholipids by cytosolic PLA2.
Interestingly, mice deficient in cPLA2 were found to be
resistant to MPTP-induced dopaminergic neurotoxicity
(Klivenyi et al., 1998).

When PLA2 releases ARA from glycerophospholipids, the
other product of this reaction are lysophospholipids. These can be
remodeled via the Lands cycle to PAFs, pro-inflammatory factors
that act to increase the intensity of the inflammatory response
(Farooqui, 2010a). Most PAFs act through a G-protein coupled
receptor called platelet activating factor receptor (PAF-R) (Bito
et al., 1994). A study by Kim and colleagues showed that
treating mice with MPTP significantly increased the levels of
PAFs in the striatum, specifically the PC(O-18:1:2:0) PAF, as

well as increased the expression of PAF-R (Kim et al., 2013).
In mice treated with ginkgolide B, an inhibitor of PAF-R,
or in PAF-R knock-out mice, MPTP-induced dopaminergic
neurodegeneration was attenuated. These studies indicate that
the effects of oxidative stress and the inflammatory response
involve an interplay between numerous lipid mediators, the
enzymes involved in lipid processing, as well as associated
receptors of these molecules.

LIPIDS AS EITHER TREATMENT OR
TREATMENT TARGETS IN
PARKINSON’S DISEASE

As discussed, altered lipid pathways and lipid mebrane
composition in PD appear to play significant roles in disease
pathogenesis and thus present promising targets for PD
treatment. Here we will briefly discuss studies describing the
use of lipids or of lipid analogs as treatments for PD, as well as
modulators of enzymes involved in lipid metabolism.

Gangliosides and Ganglioside Analogs
In MPTP mouse models of PD, treatment with the ganglioside
GM1 was shown to partially restore depleted levels of dopamine
and promote neuron recovery (Hadjiconstantinou et al., 1986,
1989; Schneider et al., 1995). Furthermore, in MPTP primate
models of PD, GM1 treatments restored dopaminergic terminals
in the striatum (Pope-Coleman et al., 2000) and led to significant
recovery of motor functions (Pope-Coleman and Schneider,
1998). A randomized delayed start trial including 77 patients with
PD reported that treatment with GM1 for 120 weeks compared to
a 24-week delayed start and subsequent treatment for 96 weeks
showed significant imporvement in motor scores as well as
sustained benefit after the end of the trial (Schneider et al., 2013).
A subsequent 5-year open study in which PD patients received
GM1 found that there was an improvement in motor symptoms
compared to baseline, although this was somewhat modest
(Schneider et al., 2010). This suggests that GM1 has beneficial
effects with regards to PD symptoms and potentially disease
progression, which is in line with the previously mentioned
studies showing that PD patients have a GM1 deficiciency (Wu
et al., 2012), and that GM1 inhibits the formation of α-syn fibrils
(Martinez et al., 2007).

The beneficial effects of GM1 treatment in these studies may
have been compromised by the limited access GM1 had to the
brain and furthermore to the neurons themselves. Much greater
improvements may be possible through the use of membrane-
permeable GM1 analogs that could easily cross the blood-brain
barrier. Such an analog of GM1, LIGA-20, was developed in 1990
by Manev et al. (1990). It has the same ologosaccharide chain as
GM1, but contains a modified hydrophobic moiety which allows
it to be permeable to the plasma membrane. This analog proved
to be effective via oral administration and appeared to be much
more potent than GM1 in promoting the recovery of dopamine
levels in the striatum in an MPTP mouse model of PD (Schneider
and DiStefano, 1994; 1995).
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Statins
There have been a number of reports suggesting that the
use of statins, cholesterol-lowering drugs, may prevent the
development of PD. A study by Wahner and colleagues reported
a high frequency of statin use in the 342 healthy controls
recruited versus 312 sporadic PD patients (Wahner et al.,
2008). Furthermore, a recent meta-analysis investigated the
use of statins with regard to the risk of developing PD and
concluded that statin use was associated with a lower risk of
PD (Bai et al., 2016). As statins are known to lower cholesterol
levels, this somewhat contradicts the reports from several case-
control studies mentioned earlier which identified higher levels
of cholesterol as potentially protective (Scigliano et al., 2006;
Miyake et al., 2010). One explanation for this could be that
the beneficial anti-inflammatory or anti-oxidant effects of statins
could compensate for the decreased cholesterol levels.

Phospholipase A2 Inhibitors
The development of novel inhibitors of phospholipase A2
(PLA2) have also proven promising in treating PD. Yoshinaga
et al. (2000) showed that an inhibitor of cPLA2 (arachidonyl
trifluoromethyl ketone) reduced MPTP-induced cytotoxicity in
a GH3 cell line, a model for dopaminergic neurons derived from
rat anterior pituitary. Inhibition of PLA2 by quinicrine in vivo in
mice was also demonstrated to have protective effects on MPTP-
induced depletion of striatal dopamine in a dose-dependent
manner (Tariq et al., 2001).

Further research into lipid alterations in PD could give rise
to a wide array of novel treatments based on the specific
lipid species, enzymes, or overall lipid pathways and networks
found to be causative factors in PD. Clearly, a relevant focus is
substrate reduction and enzymatic replacement therapies focused
on regulating ceramide and GlcCer homeostasis.

CONCLUSION

To be able to prevent PD or at the least to combat it
more effectively in the future, the interplay between multiple

pathomechanisms involved must be elucidated. Current PD
treatments only manage symptoms and are unable to impede
disease progression. PD patients do not experience motor
symptoms until more than 50% of the neurons in the substantia
nigra have degenerated (Bernheimer et al., 1973), which results
in a substantial lag in treatment. Therefore, it is imperative to
identify molecular changes that can be measured very early in
the course of the disease. Changes in membrane lipids have been
observed in both affected and unaffected regions of brains from
PD patients, indicating that these lipid pathway alterations may
precede Lewy body pathology. Identifying these early changes in
lipids could help in diagnosing the disease earlier and employing
neuroprotective therapies, discrimating patients with PD from
those with other similar neurodegenerative disorders such as
DLB, as well as stratifying PD patients and providing them with
personalized treatment. Different steps in lipid metabolism could
be targeted to modulate levels of both toxic lipids and potentially
protective lipids which in the future could lead to more effective
treatments with fewer side effects.
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