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Abstract

During Alzheimer’s Disease, sustained exposure to amyloid-b42 oligomers perturbs metabolism of ether-linked
glycerophospholipids defined by a saturated 16 carbon chain at the sn-1 position. The intraneuronal accumulation of 1-
O-hexadecyl-2-acetyl-sn-glycerophosphocholine (C16:0 PAF), but not its immediate precursor 1-O-hexadecyl-sn-glyceropho-
sphocholine (C16:0 lyso-PAF), participates in signaling tau hyperphosphorylation and compromises neuronal viability. As
C16:0 PAF is a naturally occurring lipid involved in cellular signaling, it is likely that mechanisms exist to protect cells against
its toxic effects. Here, we utilized a chemical genomic approach to identify key processes specific for regulating the
sensitivity of Saccharomyces cerevisiae to alkyacylglycerophosphocholines elevated in Alzheimer’s Disease. We identified ten
deletion mutants that were hypersensitive to C16:0 PAF and five deletion mutants that were hypersensitive to C16:0 lyso-
PAF. Deletion of YDL133w, a previously uncharacterized gene which we have renamed SRF1 (Spo14 Regulatory Factor 1),
resulted in the greatest differential sensitivity to C16:0 PAF over C16:0 lyso-PAF. We demonstrate that Srf1 physically
interacts with Spo14, yeast phospholipase D (PLD), and is essential for PLD catalytic activity in mitotic cells. Though C16:0
PAF treatment does not impact hydrolysis of phosphatidylcholine in yeast, C16:0 PAF does promote delocalization of GFP-
Spo14 and phosphatidic acid from the cell periphery. Furthermore, we demonstrate that, similar to yeast cells, PLD activity is
required to protect mammalian neural cells from C16:0 PAF. Together, these findings implicate PLD as a potential
neuroprotective target capable of ameliorating disruptions in lipid metabolism in response to accumulating oligomeric
amyloid-b42.
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Introduction

Perturbations in glycerophosphocholine (GPC) metabolism are

linked to the pathogenesis of Alzheimer’s Disease (AD) with the

accumulation of choline-containing lipids in AD patients associ-

ated with accelerated cognitive decline [1–4]. Soluble amyloid-b42

(Ab42) oligomers can increase hydrolysis of structural membrane

lipids by activating cytosolic phospholipase A2 (cPLA2), a Group

IVa PLA2 that preferentially hydrolyzes arachidonic acid from the

sn-2 position of 1-O-alkyl-2-arachidonoyl- and 1-O-acyl-2-arachi-

donoyl- glycerophospholipids [2,5,6]. Sustained activation results

in arachidonic acid signaling cascades, as well as the intraneuronal

accumulation of choline-containing second messengers [1,2,5].

The fate and functions of these GPC second messengers are of

particular interest. Recent evidence points to the accumulation of

specific choline-containing metabolites [1,2,5]. Underlying mech-

anisms have yet to be fully elucidated. PC(O-16:0/2:0) platelet

activating factor (PAF) species are elevated in AD brain and human

neurons exposed to Ab42 [1]. Of these elevated species, 1-O-

hexadecyl-2-acetyl-sn-glycerophosphocholine (C16:0 PAF), but not

its immediate precursor 1-O-hexadecyl-sn-glycerophosphocholine

(C16:0 lyso-PAF), is implicated in Ab42 toxicity [1]. Rising

intraneuronal concentrations of C16:0 PAF activate an endoplasmic

reticulum (ER)-stress signaling cascade leading to the hyperpho-

sphorylation of tau that ultimately compromises neuronal viability

[1]. Molecular and pharmacological approaches designed to

promote the hydrolysis of C16:0 PAF to C16:0 lyso-PAF and/or

block downstream signaling are sufficient to inhibit Ab-mediated

neurotoxicity [7–10]. These findings underscore the importance of

this lipid species in Alzheimer’s disease and emphasize the rationale

for identifying key targets involved in shielding its toxic effects and/

or promoting its hydrolysis and inactivation.
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Unbiased approaches exploiting the cross-species conservation

of biochemical pathways between man and the budding yeast

Saccharomyces cerevisiae have proven to be successful in elucidating

the mode-of-action of various compounds [11]. Further, S. cerevisiae

has also been used as a model organism to delineate key aspects of

eukaryotic lipid metabolism and to investigate various neurode-

generative diseases [12,13]. Despite conservation of the PAF

metabolic pathway genes and detection of PAF species in yeast

[14], the function of the different species in yeast is currently

unclear, although PAF species are suggested to play a role in cell

cycle progression [15,16]. Similar to the effects of PAF on

mammalian cells, yeast cells treated with PAFs and structurally

related alkylacylglycerophosphocholine analogs induce disruptions

in lipid metabolism and reduce viability [17,18]. Interestingly, S.

cerevisiae strains harboring deletions for enzymes involved in

phosphatidic acid (PA) metabolism, including phospholipase D

(SPO14) and glycerol 3-phosphate acyltransferase (SCT1), exhibit

increased susceptibility to PAF species and other choline-

containing lipids suggesting an essential role for PA in mediating

the toxic effects of PAFs [17]. Whether the toxic effects of

alkylacylglycerolipids are solely dependent upon SPO14 and

similar pathways impinging upon PA metabolism or whether

other aspects of cellular metabolism are involved has not been

systematically assessed at a genome-wide level. Moreover, it

remains unclear why PAF second messengers accumulate in AD

tissue without compensatory metabolism.

To identify additional requisite proteins and/or pathways which

serve to regulate the cytotoxic affects of C16:0 PAF, we performed

genome-wide yeast chemical genomic screens with both C16:0

PAF (pathogenic in AD) and C16:0 lyso-PAF (non-pathogenic in

AD). We found that the two PAF species identify largely distinct

chemical genetic interactions and that the deletion mutant that

exhibited the greatest differential sensitivity to the pathogenic

C16:0 PAF species was YDL133w, a previously uncharacterized

ORF encoding a putative transmembrane protein with unknown

function. Upon subsequent investigation we determined that

Ydl133w physically interacts with Spo14 and is required for PLD

catalytic activity in S. cerevisiae. Importantly, Ydl133w, here in

referred to as Srf1 (Spo14 Regulatory Factor 1), represents the

only reported regulator of Spo14 required for PLD catalytic

activity in mitotic cells. We report that though C16:0 PAF does not

impact global PLD activity, it does cause the delocalization of

Spo14 and PA from the periphery. Importantly our observations

can be extended from the yeast model system as PLD activity in

mammalian cells was found to confer protection against the toxic

effects of C16:0 PAF.

Results

Sensitivity of yeast to C16:0 PAF and C16:0 lyso-PAF
Previous studies have determined that, similar to neuronal cells

[1], S. cerevisiae are sensitive to C16:0 PAF [17]. To determine

whether C16:0 PAF and C16:0 lyso-PAF differentially impact the

growth of S. cerevisiae and to identify an appropriate working

concentration range for these lipids in subsequent studies we

performed liquid growth curve analysis using wild type haploid

yeast cultured with increasing concentrations of C16:0 PAF, C16:0

lyso-PAF or ethanol (carrier control). As expected, C16:0 PAF

inhibited wild type haploid yeast growth in liquid culture in a

concentration-dependent manner whereas C16:0 lyso-PAF was

found to be comparatively less toxic at similar concentrations

(Figure 1). Although both lipids impact viability at higher

concentrations, the distinct effects of these two lipids at lower

Author Summary

Accelerated cognitive decline in Alzheimer’s patients is
associated with accumulation of choline-containing lipids.
One of these lipids, C16:0 platelet activating factor (PAF), is
specifically elevated in brains of Alzheimer’s patients. As
elevated exposure to C16:0 PAF ultimately leads to
neuronal death, it is crucial to identify underlying
mechanisms that mitigate the toxic effects of this lipid.
In this study we exploit the conserved biology between
humans and baker’s yeast to identify key genes that are
essential to buffer the toxic effects of C16:0 PAF. We found
that Srf1, or Spo14 Regulatory Factor 1, the previously
uncharacterized protein Ydl133w, is essential for mitigat-
ing the toxic effects of C16:0 PAF in yeast. We determine
that Srf1 interacts with yeast phospholipase D (PLD) Spo14
and is required for PLD activity in mitotic cells. Hence we
discovered a novel regulator of PLD in yeast. Further, we
extend our studies to higher eukaryotes demonstrating
that PLD is required to buffer the neurotoxic effect of
C16:0 PAF. Our study suggests that therapeutic strategies
modulating PLD activity may be effective in ameliorating
Alzheimer’s Disease pathology associated with disruptions
in lipid metabolism.

Figure 1. The differential sensitivity of yeast to C16:0 PAF and C16:0 lyso-PAF. Growth of wild type (YPH499) strain (OD600) as a function of
time in hours. Wild type yeast cells were grown in YPD liquid culture with or without C16:0 PAF or C16:0 lyso-PAF as indicated. Growth curves were
performed in triplicate and the error bars represent 1 standard deviation.
doi:10.1371/journal.pgen.1001299.g001
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concentrations have not previously been appreciated and parallels

their toxicity to neuronal cells [1,19].

C16:0 PAF and C16:0 lyso-PAF chemicogenomic screen
To identify critical proteins and/or pathways which are

involved in regulating the cytotoxic effects of C16:0 PAF, the

yeast haploid deletion mutant array (DMA) was robotically pinned

onto agar plates containing either ethanol or a sublethal

concentration of C16:0 PAF (120 mM). To facilitate the identifi-

cation of potentially AD-relevant pathways we also screened with

equimolar concentrations of C16:0 lyso-PAF (120 mM) to distin-

guish between pathways that regulate AD-associated (C16:0 PAF)

and non-associated (C16:0 lyso-PAF) phenotypes. The screen was

performed in triplicate and 90 strains displaying putative increased

sensitivity to C16:0 PAF or C16:0 lyso-PAF were further subjected

to quantitative liquid growth curve measurements in the presence

of C16:0 PAF, lyso-PAF, or ethanol (Table S1). A reduced

concentration of 40 mM was employed in liquid cultures as this

was found to cause moderate growth inhibition in wild type cells,

thereby permitting quantitative analysis of the sensitivity of the

individual strains to C16:0 PAF and C16:0 lyso-PAF relative to

ethanol treatment using logistic growth curve analysis (LGCA, see

Material and Methods and Text S1 for details). This rigorous

methodology accounts for the repeated measurements of individ-

ual liquid cultures and also exploits full, sigmoidal growth curves,

since it does not assume exponential growth. Furthermore, we also

normalize for plate and plate-treatment effects. LGCA revealed 13

deletion mutants that were hypersensitive to at least one PAF

species, compared to the wild type response: ten strains were

hypersensitive to C16:0 PAF, five strains were hypersensitive to

C16:0 lyso-PAF, and two overlapping strains were hypersensitive to

both (Bonferroni corrected p-value ,0.04; Figure 2A, Table S1).

As expected, the spo14D mutant was hypersensitive to C16:0 PAF

as has previously been described [17]. sct1D mutants have also

been reported to be hypersensitive to C16:0 PAF [17], and though

it did not make our stringent cut-off, the sct1D mutant was ranked

13th in sensitivity to C16:0 PAF (Table S1).

Using LGCA we also assessed the differential sensitivity of each

deletion mutant to C16:0 PAF versus C16:0 lyso-PAF. At the

40 mM treatment level, wild type cells exhibited approximately the

same growth inhibition when exposed to either PAF species and

we defined differential sensitivity as a departure from the status

quo. Eleven deletion mutants exhibited differential sensitivity to

one of the PAF species (Bonferroni-corrected p-value ,0.04,

Figure 2. C16:0 PAF and C16:0 lyso-PAF chemical genetic screen. (A) Chemical genetic interaction network for C16:0 PAF and C16:0 lyso-PAF.
Deletion mutants that displayed a hypersensitivity to either 40 mM C16:0 PAF and/or C16:0 lyso-PAF (Bonferroni corrected p-value ,0.04) are
represented by nodes that are color coded according to their SGD cellular roles and/or through review of literature. Interactions are represented by
edges. (B) Plot of the differential sensitivity (in mins) = ag-PAF2ag-L-PAF for wild type (wt) along with the 11 strains identified that had differential
sensitivity to one of the PAF species (Bonferroni corrected p-value ,0.04). Strains that are hypersensitive to C16:0 PAF have positive differential
sensitivity, while strains that are hypersensitive to C16:0 lyso-PAF have negative differential sensitivity.
doi:10.1371/journal.pgen.1001299.g002
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Figure 2B and Table S1). Of the two mutants that were identified

in both screens, agp2D cells were equally sensitive to both lipids

whereas taf14D displayed greater sensitivity to C16:0 PAF.

Though LGCA identified ccs1D as being sensitive to C16:0 PAF

its differential sensitivity was not significant. The differential

sensitivity of four strains was striking. Namely, nup84D cells

displayed the greatest differential sensitivity to C16:0 lyso-PAF,

whereas srf1D, snf6D and spo14D were significantly more sensitive

to C16:0 PAF than C16:0 lyso-PAF. The largely distinct chemical

genetic profiles for C16:0 PAF and C16:0 lyso-PAF indicates that

these related alkylacylglycerophospholipids impact upon distinct

cellular pathways in yeast.

Srf1 interacts with Spo14
Our results indicate that at the 40 mM treatment level, Srf1 is

pivotal for buffering the effects of C16:0 PAF. The biological

function(s) of Srf1 is unknown but it is predicted to be a

transmembrane protein. Therefore we sought to decipher its

cellular function by identifying proteins that interact with Srf1. As

traditional tandem affinity purification (TAP) protocols were not

successful in purifying Srf1-TAP [data not shown and ref. 20,21],

we utilized a less stringent single step affinity purification approach

based on the modified chromatin immunopurification (mChIP)

technique [22]. Though this technique was developed for

improving the purification of insoluble chromatin associated

proteins, it is also applicable to other subclasses, including

membrane associated proteins [23]. Using mChIP we successfully

purified Srf1-TAP and identified five co-purifying proteins by mass

spectrometry, of which the largest number of peptides correspond

to Spo14 (Figure 3). The physical interaction between Srf1 and

Spo14, combined with the sensitivity of the corresponding deletion

mutants to C16:0 PAF [Figures 2, 4 and ref. 17] suggest Srf1 may

work in a complex with Spo14 to regulate PA metabolism.

Srf1 and Spo14 buffer the toxic effects of C16:0 PAF
To determine if Srf1 and Spo14 function together or work in

parallel pathways, we compared the sensitivity of the srf1Dspo14D
double mutant to C16:0 PAF with that of the single mutants

(Figure 4A). In agreement with our chemical genomic screen, srf1D
cells display greater sensitivity to C16:0 PAF than spo14D cells.

Interestingly, deletion of both SRF1 and SPO14 did not result in an

additive increase in C16:0 PAF sensitivity but rather, the double

mutant and spo14D exhibited similar sensitivity to C16:0 PAF.

This indicates that spo14D is epistatic to srf1D and is in agreement

with the hypothesis that Spo14 and Srf1 are in a complex and not

in parallel pathways. In light of the physical interaction between

Srf1 and Spo14, one interpretation of this result is that Spo14

activity is misregulated in the absence of Srf1. To further examine

this possibility, we overexpressed SPO14 in wild type, srf1D and

spo14D strains (Figure 4B). Overexpression of catalytically active

(SPO14 and GFP-SPO14) [24], but not catalytically inactive (GFP-

SPO14K–H) [24], SPO14 was sufficient to rescue the spo14D strain

from C16:0 PAF-mediated toxicity, whereas overexpression of

SPO14 was not found to have any effect in srf1D cells. Our findings

suggest that Srf1 functions either downstream of Spo14 in

mediating an aspect of PA-dependent signaling or directly upon

the regulation of Spo14 function. In consideration of the physical

interaction between Spo14 and Srf1 (Figure 3), it is more likely

that Spo14 and Srf1 act in concert to mediate choline hydrolysis

and PA production.

Srf1 is not essential for sporulation
Although dispensable in mitotic cells, Spo14 is strictly required

for the progression of S. cerevisiae through meiosis [25]. This

observation provides a simple approach to measure the effects of

potential Spo14 interacting partners upon its catalytic activity

during meiosis. Indeed, GCS1, which encodes an indirect regulator

of Spo14 catalytic activity is essential for sporulation [26].

Therefore, we assessed whether deletion of SRF1 would result in

impaired spore formation. In contrast to spo14D diploids that failed

to sporulate, srf1D diploids displayed only minor impairments in

sporulation which were associated with an increased frequency of

dyads (Table 1). The modest effect of SRF1 on sporulation is in

agreement with previous reported genome-wide studies [27], and

suggests that Srf1 may have only a minor or no impact on Spo14

activity during meiosis or that Srf1 may function via PLD-

independent mechanism during sporulation.

Srf1 regulates Spo14 catalytic activity in mitotic cells
Despite the limited impact on sporulation, there is a possibility

that Srf1 may regulate PLD activity in mitotic cells. Therefore, we

sought to examine whether Srf1 could modify Spo14 catalytic

activity or localization in mitotic cells. The former possibility was

directly assessed by measuring PLD activity in particulate fractions

Figure 3. mChIP of Srf1–TAP co-purifies Spo14. (A) Silver-stained 4-12% NuPAGE gels of the protein network associated with Srf1-TAP
(YKB2270). The arrow indicates the position of Srf1-TAP, the * indicates the position of Spo14 and IgG indicates the position of the immunoglobin. (B)
An aliquot of the purification was used for Western blot analysis using anti-TAP-tagged antibodies (a-TAP). (C) Summary of mass spectrometry
analysis of the proteins identified in the Srf1-TAP mChIP with high confidence. Spo14 and Srf1-TAP were the two most abundant proteins identified in
the Srf1-TAP purification.
doi:10.1371/journal.pgen.1001299.g003
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prepared from wild type and mutant strains using a previously

described methodology employing a fluorescently labeled phos-

phatidylcholine derivative as a PLD substrate [28,29]. Production

of PA and phosphatidyl butanol (PBt), a product of transpho-

sphatidylation, was evident in wild type particulate preparations

but was completely absent in srf1D, spo14D and srf1Dspo14D
mutant strains (Figure 5A). This result indicates that Srf1 may

contribute to particulate-associated PLD catalytic activity in

mitotic cells. As we have demonstrated that Spo14 physically

interacts with Srf1, a predicted transmembrane protein, we

sought to determine whether the deletion of SRF1 promotes the

loss of Spo14 from the particulate fraction. To test this,

particulate and cytosolic fractions were prepared from strains

transformed with either an empty vector control or a plasmid

expressing HA-tagged SPO14 [24]. The absence of PLD activity

in srf1D strains is not a consequence of altered partitioning of

Spo14 catalytic activity between particulate and cytosolic

fractions in these cells as catalytic activity was absent from both

fractions (Figure 5B). Furthermore, western blot analysis

demonstrates that HA-Spo14 remains associated with the

particulate fraction independent of Srf1 (Figure 5C). Interesting-

ly, HA-Spo14 protein levels are consistently reduced in srf1D
mutants (,30% less HA-Spo14 as determined by densitometry).

However, the absence of detectable PLD activity cannot be fully

explained by the exclusion of Spo14 from the particulate fraction

or a reduction in Spo14 protein levels (Figure 5C) thereby further

implicating a biological role for Srf1 in regulating Spo14 catalytic

activity during mitosis.

Figure 4. Characterization of a genetic interaction between SPO14 and SRF1 revealed by C16:0 PAF. (A) Sensitivity of srf1D to C16:0 PAF
is suppressed by spo14D. Wild type (YPH500), spo14D (YKB2076), srf1D (YKB1164) and srf1Dspo14D (YKB2080) cells were plated in five-fold serial
dilution onto YPD or YPD supplemented with C16:0 PAF as indicated. The plates were incubated for 3 days at 30uC. (B) Overexpression of SPO14 does
not alleviate the sensitivity of srf1D cells to C16:0 PAF. Wild type (YPH500), srf1D (YKB1164), and spo14D (YKB2076) cells transformed with pRS415
(vector), pME962 (SPO14), pME1096 (GFP-SPO14) or pME1130 (GFP-SPO14K–H)[24] were plated in five-fold serial dilution onto SD-Leu or SD-Leu
supplemented with C16:0 PAF as indicated. The plates were incubated for 2 days at 30oC. The growth of all strains tested was moderately improved
on minimal media compared with YPD at equivalent concentrations of C16:0 PAF. This is reflected by the observed differences in growth for both the
wild type and srf1D strain when comparing panels (A) and (B).
doi:10.1371/journal.pgen.1001299.g004
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PLD–dependent inhibition of C16:0 PAF–mediated
signaling and toxicity

Our findings implicating Srf1 in both buffering against the toxic

effects of C16:0 PAF and in regulating mitotic PLD activity,

underscores the importance of the PLD pathway in protecting yeast

cells from C16:0 PAF. Therefore, we next sought to address the

effects of C16:0 PAF on the subcellular localization and activity of

Spo14. As had been previously shown [24,30], in untreated or

vehicle treated wild type (WT) cells, GFP-Spo14 displays modest

peripheral and diffuse cytosolic localization (Figures 6A and S1).

Deletion of SRF1 was not observed to grossly affect the subcellular

localization of GFP-Spo14 in untreated or vehicle treated cells.

However, addition of C16:0 PAF resulted in the rapid loss of GFP-

Spo14 at the cell periphery with a concomitant accumulation of

GFP-Spo14 at discrete foci or intracellular aggregates in 6167% of

wild type cells (Figures 6A, 6B and Figure S1). However, treatment

with C16:0 PAF resulted in significantly fewer foci in the srf1D
background (962%) suggesting Srf1 plays a role in the intracellular

trafficking of Spo14 under C16:0 PAF treatment (Figures 6A, B S1).

As a secondary method to explore the impact of C16:0 PAF on PLD

localization we looked at the impact of C16:0 PAF on wild type cells

expressing GFP-Q2; GFP tagged to the PA-binding domain of the

transcription factor Opi1 [31]. GFP-Q2 localizes to both the

periphery and nucleus in wild type cells, however in spo14D cells the

peripheral signal is lost indicating PA and hence PLD activity is no

longer concentrated at the periphery [31]. Treatment of wild type

cells expressing GFP-Q2 with C16:0 PAF resulted in the loss of GFP-

Q2 from the periphery (Figure 6C), mirroring the effect of C16:0

PAF upon GFP-Spo14 (Figure 6C). Together our studies support

C16:0 PAF-mediated changes in the subcellular localization of GFP-

Spo14 which are at least in part dependent upon Srf1 expression.

Interestingly although C16:0 PAF treatment consistently resulted in

the formation GFP-Spo14 aggregate structures; we never detected

localization of GFP-Q2 in a similar structure. This suggests that,

potentially, GFP-Spo14 aggregates that form upon PAF treatment

are no longer catalytically active or alternatively that the PA

produced is not accessible to GFP-Q2. Therefore we also assessed

whether the C16:0 PAF-dependent changes in the subcellular

localization of GFP-Spo14 and PA were the result of changes in

Spo14 catalytic activity, partitioning within subcellular compart-

ments or expression levels. Addition of C16:0 PAF was not observed

to impact the catalytic activity of PLD localized to particulate

fractions (Figure 6D) which is in agreement with previous in vitro

findings [28]. Furthermore, C16:0 PAF treatment did not dissociate

PLD activity (Figure 6D) or GFP-Spo14 (Figure 6E) from the

particulate fraction, which suggests the C16:0 PAF-dependent GFP-

Spo14 aggregate structures are likely still associated with a

membranous compartment. Though the production of PA has

previously been suggested to buffer PAF toxicity, our work further

suggests that the localization of PA production is also likely of

importance in regulating the deleterious effects of C16:0 PAF.

PLD buffers the affects of C16:0 PAF toxicity in Neuro-2a
(N2a) cells

Our chemical genomic study clearly shows that PLD activity is

essential for regulating the toxic effects of C16:0 PAF. To

investigate whether this observation could be extended to higher

eukaryotes we investigated the role of PLD activity in conferring

Figure 5. Srf1 regulates phospholipase D catalytic activity in
mitotic cells. (A) Extracts of the particulate fraction were prepared
from wild type (YPH500), spo14D (YKB2076), srf1D (YKB1164) and
srf1Dspo14D (YKB2080) cells and incubated with BODIPY labeled
glycerophosphocholine (BPC) as described in Materials and Methods.
Purified Streptomyces chromofuscus (S. chromofuscus) PLD was included
as a positive control for the production of phosphatidic acid (PA). In
addition, since Spo14, but not S. chromofuscus PLD, can convert n-
butanol to phosphatidylbutanol (PBt), PLD activity was also assessed by
including n-butanol (1% v/v) in the reaction mixture. Reactions were
allowed to proceed for 40 min at 30uC before separating reaction
products by TLC. The absence of Srf1 resulted in a complete loss of
detectable PLD activity similar to that observed in spo14D mutant
strains. (B) Strains listed above were transformed with either pRS415, an
empty vector (vector), or pME940, a CEN vector expressing HA-SPO14
(SPO14) [24]. Particulate (P) and cytosolic (C) fractions were assessed for
PLD as described above. Deletion of SRF1 does not result in altered
partitioning of PLD activity into the cytosolic fraction and expression of
HA-Spo14 does not rescue PLD activity in srf1D strains. (C) Particulate
and cytosolic fractions prepared as in (B) were separated by SDS-PAGE
and analyzed by immunoblotting using anti-HA antibodies. HA-Spo14
remained associated with the particulate fraction although protein
levels were observed to be moderately reduced in srf1D strains.
Representative images are shown (n = 3).
doi:10.1371/journal.pgen.1001299.g005

Table 1. Sporulation efficiency of srf1D cells.

Strain Genotype % Sporulationa % Dyadsa

YKB2239 Wild type 28 (5.4) 4 (2.4)

YKB2079 spo14D 0 (0) NA

YKB2078 srf1D 24 (8.1) 22 (4.8)

YKB2240 spo14Dsrf1D 0 (0) NA

a Percentage sporulation and dyads were determined by brightfield
microscopy following incubation for 3 days at 25uC in liquid YP-acetate
sporulation media. The number of spores in a minimum of 300 total cells from 3
independent experiments was calculated and reported with SEM indicated in
parentheses. NA, not applicable.
doi:10.1371/journal.pgen.1001299.t001
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C16:0 PAF resistance to the murine neuroblastoma cell line N2a, a

neural cell line previously used to study PLD and Ab effects

[32,33]. N2a cells were treated with C16:0 PAF or vehicle in the

presence or absence of a small molecule inhibitor of PLD activity

that targets both PLD1 and PLD2 with equal LC50s [34].

Treatment of N2a cells in serum-free medium with 0.1% EtOH

(PAF vehicle) and 0.1% DMSO (PLD inhibitor vehicle) or with

EtOH and 5 mM PLD inhibitor did not impact upon cell viability

(Figure 7, inset). As expected, addition of 1 mM C16:0 PAF for 24

h resulted in reduced cell survival in comparison to treatment with

either vehicle (Figure 7). However, treatment with C16:0 PAF in

the presence of the PLD inhibitor resulted in a significant decrease

in cell survival in comparison to treatment with C16:0 PAF alone

or vehicle. These findings further support the role of PLD activity

in regulating against C16:0 PAF mediated toxicity in mammalian

neuroblastoma cells and indicate that a conserved mechanism for

dealing with elevated levels of C16:0 PAF may exist within

eukaryotes.

Discussion

In this study a chemical genomic screen was employed to

identify the key regulators involved in buffering the toxic effects of

C16:0 PAF and C16:0 lyso-PAF, lipid species previously shown to

be elevated in neurons in response to oligomeric Ab42 [1]. We

identified ten deletion mutants that were sensitive to C16:0 PAF

and five deletion mutants that were sensitive to C16:0 lyso-PAF as

compared to wild type (Figure 2A, Table S1). The dramatically

different effects on growth (Figure 1) and the minimal overlap in

mutants with sensitivity to either lipid suggests that C16:0 PAF,

C16:0 lyso-PAF and potentially other PAF species, impinge upon

distinct cellular pathways in yeast, which parallels the distinct

PAF-mediated effects that have been reported in mammalian

systems [1,35]. Such a distinction is important in light of recent

evidence that aberrant metabolism, in part, underlies Ab42

neurotoxicity with C16:0 PAF, but not C16:0 lyso-PAF or other

PAF species [1,2,5].

Our unbiased chemical genomic approach identified the

deletion mutant of SRF1 as having the most significant differential

sensitivity to C16:0 PAF (Figure 2B). We identified a robust

interaction between Srf1-TAP and Spo14 (Figure 3), whose

deletion mutant is also hypersensitive to C16:0 PAF [Figures 2B,

4 and ref. 17]. The identification of a physical interaction between

Srf1 and Spo14 is striking as only two other proteins, neither with

roles in PLD function, have been reported to co-purify Spo14 in

high-throughput TAP studies [20]. Furthermore, biochemical

assays determined that Srf1 is required for PLD activity in mitotic

cells (Figures 5 and 6). A role for Srf1 in mitotic PLD activity is

also supported by genome-wide synthetic lethal genetic screens

which revealed that deletion mutants of both SPO14 and SRF1

display genetic interactions with the sec14-bypass mutants CKI1

and KES1 [36]. However, in contrast to Spo14 [24,37,38], Srf1 is

not essential for sporulation (Table 1) which suggests Srf1 is not

regulating PLD activity in meiosis. Our results clearly show that

Figure 6. C16:0 PAF treatment impacts the subcellular localization of PLD but not its catalytic activity. (A) In untreated (Untx) live mid-
logarithmic phase cells grown at 30uC GFP-Spo14, expressed from a 2 m plasmid (pME1096), was found to localize diffusely within the cytoplasm with
modest accumulation at the peripheral membrane in both wild type (WT, YPH500) and srf1D (YKB1164) cells. Addition of vehicle (Ethanol, EtOH 0.4%
v/v) did not result in any changes in GFP-Spo14 localization in comparison to untreated cells. In contrast 15 minutes of C16:0 PAF (PAF, 40 mM)
treatment resulted in a loss of peripheral membrane staining and increased aggregation of GFP-Spo14 into distinct foci in wild type (WT) but not
srf1D cells. (B) Foci were quantified in wild type (YAM282-2) or srf1D (YKB2472) cells expressing GFP-Spo14 under the control of the CUP1 promoter as
described in Materials and Methods and expressed as a percentage of the total number of cells. A minimum of 300 cells for each condition from two
independent experiments (n = 2) were assessed and presented as the mean +/2 SD. (C) C16:0 PAF treatment (PAF) resulted in redistribution of a GFP-
tagged phosphatidic acid binding protein, GFP-Q2 [31]. Reduced signal was associated with plasma membrane following PAF treatment in
comparison to untreated (Untx) and ethanol (EtOH) treated cells. (D) Treatment with ethanol (EtOH, 0.4% v/v), C16:0 PAF or C16:0 lyso-PAF (40 mM) for
30 minutes did not significantly impact the hydrolysis of BODIPY labeled glycerophosphocholine (BPC) to phosphatidic acid (PA) or
phosphatidylbutanol (PBt) in wild type cells (YPH500) transformed with empty vector (pRS415, vector) or GFP-SPO14 (pME1096, SPO14). PLD
activity remained associated with the particulate (P) fraction under all test conditions. C, cytosolic fraction. Representative image of 3 experiments are
shown. (E) Treatment with C16:0 PAF did not affect the expression or partitioning of GFP-Spo14. Particulate (P) and cytosolic (C) fractions prepared as
in (D) were separated by SDS-PAGE and analyzed by immunoblotting using anti-GFP antibodies (a GFP). Representative images are shown (n = 2).
doi:10.1371/journal.pgen.1001299.g006
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Srf1-TAP can co-purify Spo14 suggesting a model where Spo14

and Srf1 form a complex in mitotic cells that is required for PLD

activity and to buffer the toxicity of C16:0 PAF (Figure 8).

How is Srf1 regulating PLD activity? It is unlikely that the

impact of Srf1 on Spo14 protein stability (Figures 5C and S1)

could explain the complete absence of PLD activity in srf1D cells.

Indeed, if Srf1 was only regulating Spo14 protein levels, then

overexpression of SPO14 should have rescued the C16:0 PAF

hypersensitivity of srf1D cells (Figure 4B). Additionally, it is unlikely

that Srf1 is regulating PLD activity through Spo14 localization as

we found that Spo14 remained associated with the particulate

fraction and localized to the plasma membrane in the absence of

Srf1 (Figures 5C Figure 6A, and Figure S1). How else could Srf1

be regulating Spo14? Similar to other eukaryotic PLD enzymes,

Spo14 catalytic activity can be regulated by numerous mecha-

nisms aside from changes in expression and localization. The

binding of phosphoinositol phosphates, fatty acids, indirect

interactions with ADP ribosylation factors (ARFs), and phosphor-

ylation have all been demonstrated to regulate PLD activity

[reviewed in 39]. Hence Srf1 may be regulating Spo14 through

one of these established mechanisms. Alternatively, though we do

not detect hydrolysis of phosphatidylcholine in the absence of Srf1,

it is possible that some catalytic activity, possibly against other lipid

targets, is still present but misregulated. Indeed this could explain

why srf1D cells display greater sensitivity to C16:0 PAF than

spo14D cells (Figure 2 and Figure 4). A different explanation for

this phenomenon could be attributed to the mislocalization of

Spo14 in the absence of Srf1 upon C16:0 PAF treatment (Figure 6).

Namely, that in the absence of Srf1, the interaction of Spo14 with

other cellular factors is perturbed thereby potentially serving to

titrate away other cellular factors important in the response to

PAF. Deletion of SPO14 in combination with deletion of SRF1

would thereby alleviate C16:0 PAF toxicity to that level which is

observed solely in the absence of PLD activity. The exact

mechanism of how Srf1 regulates Spo14 activity will require

further investigation with recombinant proteins to confirm direct

interaction and reconstitute the complex activity. However, our

work clearly shows that Srf1 is a novel interactor and regulator of

Spo14 PLD activity in mitotic cells and together Srf1 and Spo14

are necessary to buffer the toxic effects of C16:0 PAF (Figure 8).

Our yeast chemical genomic study and murine cell culture work

indicate that the role of PLD activity in buffering the cytotoxic

effects of C16:0 PAF is potentially conserved across species. How is

PLD buffering the toxic effect of this GPC? One possibility is that

PLD is rapidly inactivating C16:0 PAF through choline hydrolysis.

Indeed, human PLD has been shown to be capable of hydrolysing

lyso-PAF species [40]. However a simpler explanation is that PA

(or downstream diacylglycerol (DAG)) isoforms signal inhibition of

C16:0 PAF toxicity. Indeed, expression of the E.coli DAG kinase,

which converts DAG to PA, has been shown to suppress the

toxicity of lyso-PAF and PAF in wild type yeast [17]. While C16:0

PAF treatment is not inhibiting the PLD catalytic activity

(Figure 6B and [28]), it is causing the delocalization of GFP-

Spo14 and PA concentrations from the cell periphery (Figure 6

and Figure S1). Intriguingly the C16:0 PAF-mediated delocaliza-

tion of GFP-Spo14 is dependent on Srf1 (Figure 6). This suggests

that the localized generation of PA (or PAF hydrolysis) may be

required to buffer the toxic effects of C16:0 PAF. One possibility is

that delocalization of GFP-Spo14 and decreased PA levels from

the periphery may induce a transcriptional response that is

necessary to survive C16:0 PAF exposure. Indeed PA has been

shown to play a direct role in the transcriptional regulation of

phospholipid biosynthetic genes through the transcriptional

repressor Opi1 ([31], and reviewed in [39]. Further, our chemical

genomic screen supports this hypothesis as several genes with

established roles in transcription were identified as being

differentially sensitive to C16:0 PAF, including two members of

the SWI/SNF chromatin remodeler complex, SNF6 and TAF14,

and the transcriptional regulator UME6 (Figure 2). Although PAF

has been implicated in mediating changes in gene expression,

particularly those involved in responses to inflammation [41], the

mechanism(s) by which these transcriptional changes occur in

Figure 7. Inhibition of PLD reduces the survival of N2a cells
treated with C16:0 PAF. Undifferentiated N2a cells were treated with
vehicle (0.1% DMSO + 0.1% EtOH), or PLD inhibitor (5 mM VUO155056 +
0.1% DMSO) in serum-free media containing 0.025% BSA and cell
survival assessed by Live/Dead assay at 24 h. Data are expressed as %
survival standardized to control cultures maintained in complete media
(dotted line). There was no significant impact of treatment conditions,
vehicle treatment, or PLD inhibition on N2a survival (Student’s t-test,
p.0.05, insert). To assess impact of PLD inhibition on C16:0 PAF
sensitivity, cultures were treated with vehicle (0.1% DMSO + 0.01%
EtOH), PAF (1 mM C6:0 PAF + 0.1% DMSO), or PAF + PLD inhibitor (1 mM
C16:0 PAF + 5 mM VUO155056). Data are expressed as % survival
standardized to vehicle-treated cultures. C16:0 PAF sensitivity was
significantly enhanced by PLD inhibition (ANOVA, post-hoc Student-
Newman-Keuls multiple comparisons test, *p,0.05, **p,0.01).
doi:10.1371/journal.pgen.1001299.g007

Figure 8. Model of Srf1 regulation of Spo14 activity in mitotic
cells.
doi:10.1371/journal.pgen.1001299.g008
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response to PAF are not clearly understood, nor is it known if a

PAF-mediated transcriptional response is contributing to Ab-

induced neuronal toxicity.

An alternative, but not mutually exclusive hypothesis, is that

PLD is buffering C16:0 PAF toxicity through membrane

trafficking events. Our identification of an interaction between

Srf1-TAP and eisosome component Pil1 [42], suggest that PLD

activity may impact sites of endocytosis. However, localization of

GFP-Spo14 in either untreated or PAF treated cells (Figure 6) are

not reminiscent of the eisosome patches found beneath the plasma

membrane [42] nor does recent genetic epistatic miniarray profiles

of plasma membrane mutants implicate Spo14 in eisosome

function [43]. Alternatively, despite yeast PLD’s relatively minor

role in vesicle budding from the Golgi and membrane trafficking

[reviewed in 39], yeast PLD may become essential for lipid

membrane trafficking upon C16:0 PAF exposure. It has recently

been established that PLD1 is a negative regulator of presenilin by

two independent mechanisms [32,33]. Presenilins are a key

component of the AD-associated c-secretase complex, responsible

for cleaving the amyloid precursor protein (APP) to Ab. PLD1, but

not PLD2, facilitates both APP and presenilin-1 intracellular

trafficking and cell surface accumulation [33,44], however PLD1

also interacts with presenilin inhibiting c-secretase activity [32],

thus reducing Ab42 production. Despite this controversy, it has

been suggested that inhibiting PLD1 represents a novel therapeu-

tic approach to reducing APP and presenilin presentation at the

plasma membrane and thus retard the rate of Ab42 production

[44]. In this study, our unbiased approach suggests that such

inhibition may be counterproductive with respect to associated

GPC metabolic defects. As intraneuronal C16:0 PAF levels are

elevated following exposure to soluble Ab42 oligomers [1] it may

be that PLD1 can inhibit the underlying C16:0 PAF ER-stress

pathway by reducing Ab42 production and slowing the rate of PAF

accumulation. Thus careful dissection of the impact of PLD1 on

Ab42 production and downstream GPC-mediated signaling is

warranted. Here, the discovery that PLD is required to buffer the

neurotoxic effect of C16:0 PAF suggests that therapeutic strategies

modulating PLD activity may be effective in ameliorating the

progression of Alzheimer’s Disease pathology.

Materials and Methods

Yeast strains, genetic manipulations, plasmids, and media
The yeast strains used in this study are listed in Table 2. The

MATa deletion mutant array was purchased from OpenBiosystems

(catalog no. YSC1053). Deletion strains and TAP tagged SRF1

made for this study were designed using a standard PCR-mediated

gene insertion technique [45,46]. Plasmids pME962 (SPO14 LEU2

2 m), pME940 (HA-SPO14 LEU2 CEN), pME1096 (GFP–SPO14

LEU2 2 m) and pME1130 (GFP-SPO14K–H LEU2 2 m) were kind

gifts of J. Engebrecht [24]. Plasmid expressing GFP-Q2 was a kind

gift of C. Loewen [31]. Cells were grown in standard YPD or SD

medium supplemented with amino acids [47], unless otherwise

described. C16:0 PAF and C16:0 lyso-PAF (L100-0025 and L101-

0025, Cedarlane Canada) and resuspended in ethanol.

Chemical–genetic profiling
The MATa haploid deletion mutant array was robotically

pinned in duplicate onto YPD +200 mg/L G418 plates at a

density of 1536 colonies per plate using the SingerRotor HAD

(Singer Instrument Company Limited) and grown for 3 days at

25uC. These plates were pinned onto YPD containing either

ethanol, 120 mM C16:0 PAF, or 120 mM C16:0 lyso-PAF. Plates

were incubated at 25uC and pictures taken using a Biorad Imager

at 15 and 40 hours. The sensitivity of each mutant was assessed by

comparing colony sizes on the treated plates to the ethanol control

plates by eye and by a computer based method using

AlphaEaseFC V4.0.0 (Alpha Innotech Corporation) as described

[48]. The screen was performed in triplicate and any interactions

identified at least 2 out of 3 times or at least once for both lipids

were confirmed by quantitative growth curves. Multiple-drug

resistance (MRD) genes based on published literature [49,50] were

removed from our data set.

Growth curves
Liquid growth curves were obtained for 91 strains (90 haploid

knockouts plus wild type), spanning 24 plates. Each curve

consisted of 45 OD readings taken at intervals of 25 minutes

using Multiskan Ascent Plate Reader (Thermo Electron Corpo-

ration) and Ascent Software Version 2.6. On each plate, 6 strains

were examined (wild type plus 5 others) and each strain was

represented in 9 independent wells (3 replicates of the 3

treatments: ethanol, C16:0 lyso-PAF, and C16:0 PAF). In total,

1247 growth curves were analyzed (see Text S1 for more details).

Logistic growth curve analysis (LGCA)
A four-parameter logistic growth model was fit to the growth

curves [51]:

y xð Þ~Az
B{A

1zexp xmid{xð Þ=scal½ �

where x is time and y is the OD reading, a proxy for cell density or

population size. A is the starting point of growth or minimum OD

reading, B is the carrying capacity or maximum OD reading, xmid

is the time at 50% of total growth, and scal is approximately the

time taken to go from 50 to 75% of growth.

To simultaneously account for the repeated measurement of

individual wells and for the systematic effects of treatment and

gene deletion on growth, we fit a mixed effects logistic growth

model using the R package nlme [52,53] (R code available upon

request). Each of the four growth parameters (A, B, xmid, scal) could

therefore be modeled with a combination of fixed gene deletion

and/or treatment effects and random well effects (see Text S1 for

details). The model was fit to the ensemble of 54 curves obtained

for each plate separately. To identify chemical-genetic interac-

tions, we focused on the xmid parameter. From the fitted model, we

combined fixed effect estimates and predicted random well effects

to produce a value of xmid for each growth curve, which was treated

as derived data for downstream analysis.

There was evidence of non-negligible plate effects as well as

interaction effects between plates and the treatments C16:0 lyso-

PAF and C16:0 PAF, indicating the need for inter-plate

normalization (see Text S1 for details). Due to the inclusion of

wild type replicates on all plates for all 3 treatments, a

normalization model could be fit to the wild type xmid values to

obtain estimates of plate and plate-by-treatment interaction effects.

These were then used to remove plate-related artifacts from all of

the xmid values, i.e. including those for deletion mutants.

After normalization, we fit the following model for xmid:

x
g,tð Þ

mid ~awtzagzatzag�tze

where x
g,tð Þ

mid is the estimated/predicted and normalized value of xmid

for one growth curve, corresponding to the deletion of gene g and
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the treatment t. The typical xmid for wild type in the ethanol

reference condition is given by awt and ag and at are the individual

effects, respectively, of deleting gene g or of treatment t. The

primary parameter of interest is ag*t which captures the interaction

between deletion g and treatment t. Mutants deemed hypersen-

sitive to a single PAF species were identified based on tests of the

null hypotheses that ag*L-PAF = 0 or ag*PAF = 0. Mutants deemed

differentially sensitive were identified based on a test of the null

hypothesis that ag*PAF2ag*L-PAF = 0. There are 90 potential gene

deletions g and 3 parameters of interest (ag*L-PAF, ag*PAF,

ag*PAF2ag*L-PAF), for a total of 270 tests. We did a global

Bonferroni correction, i.e. multiplied p-values by 270, and

thresholded at 0.04 to obtain hits (5 C16:0 lyso-PAF hypersensitive,

10 C16:0 PAF hypersensitive, 11 C16:0 PAF vs. C16:0 lyso-PAF

differentially sensitive).

Srf1–TAP modified Chromatin Immunoprecipitation and
mass spectrometry

Modified Chromatin Immunoprecipitation (mChIP) and mass

spectrometry to identify co-purifying proteins was performed as

previously described [22] from 2.1 L YPD culture of YKB2270

(OD600,0.9) using 300 mL of Dynabeads (Invitrogen) coated with

rabbit IgG (I5006, Sigma).

Dot assays
Cells were grown in YPD or minimal media at 30uC to mid-log

phase and resuspended to an OD600 of 0.1 and dot assays were

performed by spotting 5 mL of five-fold serial dilutions (OD600 =

0.1, 0.01, 0.001, 0.0001) onto YPD or minimal media selection

plates containing the specified concentrations of ethanol, C16:0

lyso-PAF or C16:0 PAF as indicated.

Sporulation assays
Strains were grown overnight in YPD at 30uC. The following

day cells were pelleted at 800 g for 5 min and washed in sterile

water. An OD600 of 2.0 was resuspended in YP-acetate and

incubated at 25uC for 3 days prior to microscopic examination of

sporulation efficiency. The number of spores per ascus was

enumerated in a minimum of 300 cells from three independent

experiments and expressed as a percentage of total cells 6

standard error.

Microscopy
For localization of GFP-Spo14 (pME1096) and GFP-Q2

overnight cultures of yeast cells grown at 30uC in YPD medium

were re-suspended at a final OD600 of 0.2 and allowed to reach

mid-log phase prior treatment and image acquisition. Similarly,

wild type (YAM282-2) and srf1D (YKB2472) cells expressing GFP-

Spo14 under the control of a copper inducible promoter were

grown at 30uC and induced with 3 mM CuSO4 for 2 h to induce

GFP-Spo14 expression prior to imaging or extract preparation.

Cells were briefly centrifuged (800 g for 3 min), resuspended in a

minimal volume of growth media, spotted onto glass slides and

coverslipped prior to imaging. Images were acquired using a Leica

DMI 6000 florescent microscope (Leica Microsystems GmbH,

Wetzler Germany), equipped with a Sutter DG4 light source

(Sutter Instruments, California, USA), Ludl emission filter wheel

with Chroma band pass emission filters (Ludl Electronic Products

Ltd., NY, USA) and Hamamatsu Orca AG camera (Hamamatsu

Photonics, Herrsching am Ammersee, Germany). Images were

acquired and analyzed using Velocity Software (Perkin Elmer).

Preparation of cell extracts
Overnight cultures of yeast strains cultured in YPD were diluted

to an OD600 of 0.2 in YPD and allowed to reach mid-log growth

prior to harvesting. Yeast cells were pelleted at 800 g for 5 min and

washed with ice cold sterile water. Cytosolic and particulate extracts

were prepared essentially as described previously [28]. Briefly, cells

pellets were resuspended in 200 mL of lysis buffer (20 mM HEPES,

150 mM NaCl, 2 mM EDTA and protease inhibitor cocktail

(Sigma, P-8215)) and lysed by vortexing with glass beads. Glass

beads and intact cells were first removed by brief centrifugation.

Particulate and cytosolic fractions were collected and separated by

centrifugation at 13 000 rpm for 15 min at 4uC. Particulate

fractions were resuspended in an equal volume of lysis buffer.

Protein concentration was determined using Bradford reagent.

Table 2. Yeast strains.

Name Genotype Source

YPH499 MATa ade2-101 his3-D200 leu2-D1 lys2-801 trp1-D63 ura3-52 [54]

YPH500 MATa ade2-101 his3-D200 leu2-D1 lys2-801 trp1-D63 ura3-52 [54]

YKB2270 MATa ade2-101 his3-D200 leu2-D1 lys2-801 trp1-D63 ura3-52 SRF1-TAP::TRP This study

YKB2076 MATa ade2-101 his3-D200 leu2-D1 lys2-801 trp1-D63 ura3-52 spo14D::TRP This study

YKB1164 MATa ade2-101 his3-D200 leu2-D1 lys2-801 trp1-D63 ura3-52 srf1D::kanMX6 This study

YKB2080 MATa ade2-101 his3-D200 leu2-D1 lys2-801 trp1-D63 ura3-52 srf1D::kanMX6 spo14D::TRP1 This study

YKB2239 MATa/a ade2-10/ade2-101 his3-D200/his3-D200 leu2-D1/leu2-D1 lys2-801/lys2-801
trp1-D63/trp1-D63 ura3-52/ura3-52

This study

YKB2078 MATa/a ade2-10/ade2-101 his3-D200/his3-D200 leu2-D1/leu2-D1 lys2-801/lys2-801
trp1-D63/trp1-D63 ura3-52/ura3-52 srf1D::TRP/srf1D::TRP

This study

YKB2079 MATa/a ade2-10/ade2-101 his3-D200/his3-D200 leu2-D1/leu2-D1 lys2-801/lys2-801
trp1-D63/trp1-D63 ura3-52/ura3-52 spo14D::TRP/spo14D::TRP

This study

YKB2240 MATa/a ade2-10/ade2-101 his3-D200/his3-D200 leu2-D1/leu2-D1 lys2-801/lys2-801 trp1-D63/trp1-D63
ura3-52/ura3-52 srf1D::kanMX/srf1D::kanMX spo14D::TRP/spo14D::TRP

This study

YAM282-2 MATa ura3-53 his3D200 leu2-D1 trp1-D63 natNT2-2-pCUP1-eGFP-SPO14 [30]

YKB2472 MATa ura3-53 his3D200 leu2-D1 trp1-D63 natNT2-2-pCUP1-eGFP-SPO14 srf1D::kanMX This study

doi:10.1371/journal.pgen.1001299.t002
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In vitro PLD assays
Cellular and particulate extracts were added in equal volume to

a reaction mixture (500 mM octylglucoside, 400 mM NaCl,

60 mM HEPES (pH 7.0) and 1% v/v n-butanol) containing

200 mM BODIPY labeled glycerophosphocholine (2-decanoyl-

1-(O-(11-(4,4-difluoro-5,7-dimethyl-4-bora-2a,4a-diaza-s-indacene-

3-propionyl)amino)undecyl)-sn-glycero-3-phosphocholine, Invitro-

gen, D-3771) in the absence of exogenous PIP2, which was not

observed to affect measured PLD activity (data not shown), as

previously described [28]. Reactions were incubated at 30uC for

40 min prior to spotting on TLC plates (EMD chemicals, 5626-6).

Products were visualized under UV light and images captured

using Quantity One 4.6.1 software (Biorad) following separation in

chloroform/methanol/water/acetic acid (45:45:10:1).

Immunoblotting
10 mg of total protein from particulate and cytosolic fractions

were separated by SDS-PAGE on 5% SDS-polyacrylamide gels.

Proteins were transferred to nitrocellulose at 0.8 mA/cm2 for 2 h

prior to blocking overnight in 5% skim milk in TBS-T. Standard

Western blotting procedures were performed using a-HA (Roche,

11667149), a-GFP (Roche, 11874460001) and peroxidase-conju-

gated goat a-mouse IgG (BioRad, 170-6516).

N2a cell culture and survival assay
N2a cells were maintained in DMEM/F12 media containing 10%

fetal bovine serum, L-glutamine and penicillin/streptomycin. Cells

were plated at 1.856104 cells per well in 24 well plates prior to

treatment. Treatment with vehicle (0.1% DMSO + 0.1% Ethanol), the

small molecule PLD inhibitor N-(2-{4-[2-oxo-2,3-dihydro-1H-benzo(-

d)imidazol-1-yl]piperidin-1-yl}ethyl)-2-naphthamide (VUO155056,

Avanti Polar Lipids, 857370) + 0.1% EtOH, C16:0 PAF (PAF,

1 mM) + 0.1% DMSO, or the PLD inhibitor in the presence of C16:0

PAF (PAF + Inh) were performed in serum free complete DMEM/F12

supplemented with 0.025% bovine serum albumin (BSA) for 24 h. Cell

survival was assessed using LIVE/DEAD reagent (Invitrogen, L3224).

Viable cells in each treatment condition were quantified and

standardized to vehicle only treated cells. Data represent the results

from the measurement of 4 fields of view from 3-4 independent wells

per condition 6 SEM (n = 12-16). Statistical analyses were one-way

analysis of variance (ANOVA) followed by post-hoc Student-Newman-

Keuls multiple comparisons test or Student’s t test where only two

experimental groups were analyzed.

Supporting Information

Figure S1 C16:0 PAF effects the subcellular localization of GFP-

Spo14 under the control of a copper inducible promoter. (A) Wild

type (YAM282-2) and srf1 D (YKB2472) cells expressing GFP-

Spo14 under the control of a copper inducible promoter were

grown at 30uC and induced as described in the Material and

Methods. GFP-Spo14 expression in live mid-logarithmic phase

cells was similarly localized in untreated (Untx) and vehicle treated

cells (Ethanol, 0.4%). The diffuse localization within the cytoplasm

and a modest accumulation at the peripheral membrane was

similar to that observed in both wild type (WT, YPH500) and srf1

D (YKB1164) cells expressing GFP-SPO14 from a 2 m plasmid

(pME1096) Figure 6A. Treatment with C16:0 PAF (PAF, 40 mM)

for 15 minutes resulted in a loss of peripheral membrane staining

and increased aggregation of GFP-Spo14 into distinct foci in wild

type but not srf1 D cells. Foci in wild type (YAM282-2) or srf1 D
(YKB2472) were quantified and reported in Figure 6B. (B)

Expression of GFP-Spo14 as determined by immunoblotting (a
GFP) in untreated wild type (WT, YAM282-2) and srf1 D
(YKB2472) cells following induction with CuSO4 for 2 h was

found to be similar between both strains. Immunoblotting against

glucose 6-phosphate dehydrogenase (a G6PDH) was included to

ensure equal loading.

Found at: doi:10.1371/journal.pgen.1001299.s001 (2.87 MB TIF)

Table S1 Excel spreadsheet of quantitative analysis of the

sensitivity of the 90 individual strains plus wildtype to C16:0 PAF

and C16:0 lyso-PAF relative to ethanol treatment using logistic

growth curve analysis.

Found at: doi:10.1371/journal.pgen.1001299.s002 (0.04 MB

XLSX)

Text S1 Additional information of the logistic growth curve

analysis method.

Found at: doi:10.1371/journal.pgen.1001299.s003 (0.14 MB

DOC)
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