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Introduction
Cell culture, the process of maintaining and growing cells in vitro under con-

trolled conditions outside of living organisms, is one of the major tools of biology

and biochemistry as well as medicinal and environmental chemistry, systems biol-

ogy, and biotechnology. Both primary cell cultures, that is dispersed cells that are

cultured directly from tissues and have limited lifespan, and cell lines, immortal-

ized cells that can be cultured indefinitely, provide excellent models for studying

cell physiology and biochemistry in health and disease or test drugs or toxins.

Cell cultures are also used for the production of biologics, vaccine particles and

gene therapy components, or for bioprocessing and bioremediation. In all of these

and many other applications, metabolomics and lipidomics provide crucial molec-

ular data for the optimization or modeling of cell growth, or analysis of effects of

treatments or gene mutations. Metabolomics, the high throughput method measur-

ing metabolites, provides a method for understanding biology, assessing cells’

health, monitoring toxins or drugs, determining needs for growth or cell passag-

ing. Metabolomics can also provide, on its own or in combination with other

omics methods, data for predictive modeling of cell behavior. Analysis of meta-

bolites gives the closest molecular data to phenotype, showing the outcome of
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combined genetic, epigenetic, and environmental effects on the behavior and

characteristics of biological systems.

Interest in the application of metabolomics for analysis and utilization of cell

cultures, possibly combined with other types of omics investigations has greatly

increased due to a number of technological and analytical advances and a wide

range of cell culture applications. Metabolomics has been utilized in many cell

culture experiments with some examples including the analysis of microbial

extracellular metabolite production (Pinu & Villas-Boas, 2017), test antimicrobial

drugs in high throughput (Campos & Zampieri, 2019), explore human cell bio-

transformation of xenobiotics (Flasch et al., 2020) or define cancer cell character-

istics (Li et al., 2019).

In addition to the major ethical and humane advantages of cell cultures com-

pared to animal models, they can be utilized in a fully controlled environment

there-by limiting sample variability and providing high statistical power even

with small numbers of biological replicates. Additionally, cell cultures are gener-

ally a cost-effective method for initial or high throughput testing of, for example,

drugs or toxins (Flasch et al., 2020; Muschet et al., 2016). In spite of a number of

advantages several possible issues need to be carefully considered in metabolo-

mics examination of cell cultures including cell type and growth media and envi-

ronment selection, mode of harvesting, quenching of metabolism, cell passage

age, data preprocessing including metabolites assignment and quantification, data

processing including normalization and finally selection of appropriate analysis

tools (Čuperlović-Culf et al., 2010) Table 12.1.

Broadly, application of cell culture metabolomics can be divided into:

1. monitoring of cell culture state and cell biology in single cultures or in

different coculturing scenarios;

2. testing effect of a treatment including drugs, growth media, toxins or gene

editing approaches;

3. analysis of metabolic processes including metabolic flux under different

conditions possibly with isotopic labeling;

4. production of biological material (biologics, vaccines, gene therapy) or

bioremediation;

5. cell therapy production.

The cell metabolism can be observed through analysis of: extracellular media

(metabolic footprint analysis) which could include media or extracellular parti-

cles, cell or cell organelle extract either for bulk or single cell analysis (metabolic

fingerprinting) which could include analysis or metabolic extracts or in-cell analy-

sis which includes in vivo analysis of metabolism in cells. For each of the appli-

cation modes, sample preparation procedures have to be optimized for the

experimental goals, cell properties and analytical tools. Sample preparation proto-

col depends on the cell culture properties (adherent or suspension, 2D or 3D, sin-

gle cell), cell type, chemical properties of metabolites of interest (in targeted

approach) or aims to cover as many metabolites as possible (untargeted),
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detection techniques [e.g., Nuclear Magnetic Resonance—NMR spectroscopy or

Mass Spectrometry (MS)] and type of analysis. In this chapter we will provide

several examples of applications of cell culture metabolomics and lipidomics with

detailed protocols for sample preparation particularly for mass spectrometric anal-

ysis of lipids and metabolites and analysis of extracellular vesicles (EVs). This

will be followed by an introduction of approaches for metabolomics analysis for

cell processes description, modeling and design.

Sample processing and experimentation for cell culture
lipidomics and metabolomics

Methods for optimized metabolite and lipid extractions for cell
culture analysis

The metabolome has a major chemical and physical diversity, including both

highly hydrophobic lipids such as triglycerides and highly hydrophilic compounds

such as sugars, with partition coefficient values spanning 40 orders of magnitude

(Cajka & Fiehn, 2016). The huge diversity led to “divide and conquer”

Table 12.1 Cell culture metabolomics experimentation steps.

Process Major considerations Solution examples

Study
design

Cell type; Study type; Sample
type

Cell culture type has to be well
defined Treatment analyses or growth
optimization Extra- intra-cellular;
hydrophilic and lipophilic

Sample
collection
and storage

Standard operating procedure;
Medium use and addition;
Sample quantities

Compatibility between centers and
during study Fed batch versus
profusion Number of cells as well as
amount of material Material storage

Sample
preparation

Metabolite extraction possibly
with Derivatization

Method selection; selection of
metabolite groups; Changing of
biochemical properties for
measurement

Sample
analysis

Method identification NMR, LC-MS/MS, GC-MS/MS or
another

Data
analysis

Statistical, Unsupervised or
Supervised Machine learning

Correlation; fold changes; Clustering
or visualization; Feature selection;
classification

Modeling Mechanistic modeling Machine
learning Hybrid methods

Correlation with other data; Pathway
and network analysis; Predictive
modeling

The most important steps in the cell culture metabolomics experimentation with some important
considerations and possible general solutions.
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approaches like metabolomics and lipidomics in order to be able to increase cov-

erage of the metabolites measured, wherein water-soluble (polar) metabolites and

water-insoluble (hydrophobic) lipids are extracted with different methods. It is

important to note here that lipids will partition into the organic phase, whereas

most metabolites will partition into the aqueous phase. Thus, either a highly opti-

mized procedure for separation from the same sample or enough replicates are

necessary for analysis of both fractions requiring large amounts of biological

material for combined metabolomic and lipidomic analysis. One of the important

benefits of using cell culture for the analysis of metabolomic/lipidomic changes

in response to a variety of treatments, is the possibility for multiple replicates of

the same condition as well as possibility for increase of sample size as needed.

Exploration of functional and dysfunctional metabolic mechanisms and pathways

simultaneously, requires unbiased measurement of a maximal number of lipids

and metabolites (Dunn et al., 2005). This section will discuss various lipid and

metabolite extraction protocols which can be used to maximize the efficiency for

parallel lipidomics and metabolomics analysis of cells.

As an example of the power of parallel metabolite and lipid analysis, we use

the study by Zhen et al. which utilized a cell culture model to determine the

ecotoxicological effects of chemicals in the aquatic environment (Zhen et al.,

2018). In this work zebrafish liver cells were exposed to wastewater treatment

plant effluent collected at various distances from the discharging point. They then

analyzed both hydrophilic metabolites and lipids. While the effects on the hydro-

philic metabolome diminished with increasing distance from the discharge point,

the effects on the lipidome increased. The study demonstrated the utility of cell-

based systems as a tool to determine impact on both the metabolome and lipi-

dome, as well as the importance of studying both hydrophilic and hydrophobic

metabolites in order to be able to fully assess the biological effects of various

treatments.

The first step which must be performed in order to be able to analyze changes

or disturbances in metabolites and lipids is their extraction from cells and cell

media. The general principle of lipid extraction is, simply, mixing of an aqueous

solvent with an organic solvent and then separating the phases by centrifugations,

wherein the lipids partition to the organic phase, while proteins, many hydrophilic

metabolites, as well as many water-soluble contaminants partition to the aqueous

phase. The solvent system needs to effectively extract the lipids of interest in an

unbiased manner, without promoting the degradation of only specific lipids, and

should not introduce contamination by other compounds (Xu et al., 2013). The

two most commonly used lipid extraction methods are the ones described by

Bligh and Dyer (1959) and Folch et al. (1957) more than 50 years ago involving

the use of different ratios of chloroform, methanol and water, wherein the

lipids partition to the lower chloroform phase. The methanol is added to the sol-

vent system in order to disrupt the electrostatic forces and hydrogen bonding net-

works between the lipids and proteins. Other lipid extraction protocols which

have been developed more recently use solvent mixtures such as butanol
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(Hammad et al., 2010; Löfgren et al., 2012), methyl tert-butyl ether (MTBE)

(Byeon et al., 2012; Graessler et al., 2009; Kosicek et al., 2010; Wiesner et al.,

2009), and hexane (Hara & Radin, 1978). In general these alternative solvent sys-

tems do not show significant differences in the extraction efficiencies of the pre-

dominant lipid classes (Byeon et al., 2012; Iverson et al., 2001; Löfgren et al.,

2012; Matyash et al., 2008). For example, the MTBE method has been reported

to have very similar extraction efficiency to the Bligh and Dyer method in human

plasma (Matyash et al., 2008). This method has become very popular for extract-

ing sphingolipids in fluids (Hammad et al., 2010; Wiesner et al., 2009). Specific

protocols for these methods, along with their associated disadvantages, are sum-

marized in Table 12.2.

Following phase separation either the organic phase can be collected and

transferred to a new tube, or the aqueous phase can be removed and discarded. If

one is more interested in having an organic phase as clean of other contaminants

as possible, but with the caveat of potentially losing some lipids, especially low

abundance lipids, then the aqueous phase, typically the upper phase, can be

removed and discarded, and the lower phase containing the lipids can be washed

numerous times by multiple additions/removal of aqueous phase (Alecu,

Tedeschi, et al., 2017). Alternatively, if the goal is to maximize the amount of

extracted lipids, they can collect the lower organic phase containing the lipids,

transfer to another tube, and repeatedly re-extract the aqueous phase by repeated

additions of organic solvent, which are collected and pooled with the organic

phase that has already been collected (Xu et al., 2013).

A variety of modifications to the chloroform-methanol extraction procedure

have been made in order to maximize the ability to extract lipids of particular

interest with high efficiency. Saunders and Horrocks used isopropanol-hexane

(2:3 v/v) to extract lipids from bovine brain with a 12%�37% greater recovery of

prostaglandins, compared with traditional chloroform-methanol extraction

(Saunders & Horrocks, 1984). The Bligh and Dyer extraction has been modified

by a number of groups to use acidified methanol (2% acetic acid) in order to

increase the recovery of ether-linked glycerophospholipids, including platelet acti-

vating factors (PAFs) (Bonin et al., 2004; Liu et al., 2011; Weerheim et al., 2002;

Whitehead et al., 2007). The acidified methanol is added directly to cells being

extracted at the time of extraction; however, exposure of the sample to these

acidic conditions should be minimized, as extended exposure could lead to the

hydrolysis of glycerophospholipids, especially in aqueous solution (Ford et al.,

1992; Kayganich & Murphy, 1992). For example, to extract lipids from adherent

cells, the cells can be scraped off the plate directly into cold acidified methanol,

followed by the addition of chloroform and 0.1M sodium acetate for a final ratio

of 1:0.95:0.8 (methanol:chloroform:0.1M sodium acetate). Next, samples are vor-

texed and centrifuged at 8003 g for 2 minutes. The lower phase is then collected

and the upper phase is back-extracted 3 more times by the addition of 2 mL of

chloroform. The lower chloroform phase is collected each time and pooled with

the other lower phases, and this is then evaporated under nitrogen gas. The dried
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Table 12.2 Lipid extraction protocols.

Method Time Equipment Advantages Disadvantages

Ultracentrifugation,
differential
centrifugation 700,
2400, 10,000, and
100,0003 g

140�300 min Ultracentrifugation
equipment, rotors and
tubes

Isolation from reasonable volumes
(upto 1.5 L), low cost if access to UC
equipment, sEV cargo, that is protein
and RNA not affected

Equipment-dependent, laborious, time-
consuming, non-EV contamination, low
reproducibility, low yield, low purity, high
centrifugation forces cause structural
damage to sEVs, higher risk of
contamination and low-throughput (only six
samples fit in one UC spin)

Density gradient
ultracentrifugation,
sucrose or iodixanol
density gradient after
UC

280 min�2
days

Ultracentrifugation
equipment, rotors and
tubes. As well, sucrose
and iodixanol density
media

Pure sEVs population; No
contamination with viral particles, high
sEVs population purity and high
separation efficiency after iodixanol
UC

Equipment-dependence, low yield,
laborious, time-consuming and low-
scalability

Tangential flow
filtration

110�150 min Sterile hollow fiber
polyethersulfone
membrane filter with
specific molecular weight
cut-off

Pure sEVs population, high sEVs
structural integrity, fast, higher
reproducibility, better sterility, and
large-scale stable production

Lack of method validation, risk of the sEVs
being stuck in the membrane pores (filter-
plugging), loss of sample, various factors
affecting the filtration rate (e.g.,
temperature), and purified sEVs have small
quantity of exosomal proteins

Lipid extraction protocols used for cell culture lipidomics.



lipids can be re-dissolved in 100% ethanol and stored at 280�C in amber glass

vials under nitrogen to prevent lipid oxidation (Xu et al., 2013).

In the ecotoxicological study by Zhen et al. (2018), the authors used a modi-

fied chloroform/methanol extraction method where they kept both the aqueous

and organic phases, wherein one fraction contained the hydrophilic metabolites

and the other fraction contained lipids. Cells were homogenized in methanol

using a tissue lyser, followed by the addition of 0.24 mL chloroform and further

homogenization. The same volume of chloroform was added again to the resulting

homogenate, followed by 0.22 mL of deionized water and further homogeniza-

tion. To separate the phases the mixture was centrifuged at 30003 g for 15 min-

utes. The two phases were separated by pipetting and then dried down using a

vacuum concentrator (Zhen et al., 2018). It should be noted here that it is impor-

tant to perform optimization experiments with standards for all metabolites and

lipids of interest in order to determine whether using such an extraction method

for both hydrophilic metabolites and lipids is biasing the analysis towards specific

species. Other such “double” biphasic extraction methods have recently been

developed where both the aqueous and organic phases from the sample are used

for MS analyses (Villaret-Cazadamont et al., 2020). Villaret-Cazadamont et al.,

compared the extraction efficiency of a classical water-soluble metabolite extrac-

tion with acetonitrile, methanol, and water acidified with formic acid and a lipid

extraction with dichloromethane and methanol to a double extraction method. In

the double extraction method, both hydrophilic metabolites and lipids were

extracted using a quenching solution of cold methanol, acetonitrile, and milliQ

water with 0.1% formic acid in a volume ratio of 2:2:1. Samples were centrifuged

at 4003 g and 2.5 mL of dichloromethane were added. The upper aqueous phase

and lower organic phase were separated and dried down for metabolite and lipid

analysis, respectively. Lipid internal standards were added to perform relative

quantification of lipids and 13C was added for absolute quantification of metabo-

lites. The absolute concentration of the metabolites was found to be similar for

the double extraction compared to the two separate extractions for the majority of

polar metabolites. However, lower extraction efficiency was obtained for the

amino acids methionine and phenylalanine and the following metabolites linked

to energy metabolism: 6-phosphogluconate, pyridoxal-5-phosphate, cytidine

diphosphate, a-ketoglutarate, guanosine diphosphate, uridine diphosphate acetyl-

glucosamine and uridine 50-monophosphate. The polarity of metabolites deter-

mines their distribution in aqueous and organic phases during liquid-liquid

extractions (Houck et al., 2015), with polar metabolites preferentially partitioning

into aqueous phases, hydrophobic metabolites migrating to organic phases

(Humbert et al., 2014; Poole & Poole, 2010), and metabolites of intermediate

polarity distributing between both phases. This can result in an underestimation of

polar metabolites like the ones mentioned above when the concentration is

assessed in the aqueous phase. For lipids, the classical extraction protocol showed

significantly better extraction efficiency for triglycerides, phosphatidylethanola-

mines, phosphatidylcholines, and phosphatidylinositol, while the double
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extraction protocol demonstrated higher extraction efficiency for ceramides and

cholesterol. The relative distribution of different lipid molecular species in each

lipid family was not affected by the extraction protocol used.

After extraction of lipids from cell samples, the most common analysis

method for their separation and subsequent identification and quantification is

liquid-chromatography MS (LC-MS) (Cajka & Fiehn, 2016; Fauland et al., 2011;

Zhai & Reilly, 2002). Depending on the lipids of interest, either normal phase

chromatography or reverse phase chromatography can be used. In normal-phase

chromatography the column packing is polar and the mobile phase is nonpolar for

example, hexane, ethyl acetate, etc., and lipids are separated based on their polar

head groups. In reverse phase chromatography the column packing is hydrophobic

(e.g., silica beads bonded to C18 chains) and the mobile phase is water (buffer)1
water-miscible organic solvent (e.g., MeOH), and therefore lipids will separate

based on the carbon chain length, double bonds, number of OH groups.

For the analysis of hydrophilic metabolites, gas chromatography-MS was

widely used in earlier times and is still used today for the detection of organic

acids and amino acids (Kvitvang et al., 2011; Milkovska-Stamenova et al., 2015;

Tanaka et al., 1980). However, there are a number of drawbacks to using GC-MS

analysis. It is not suitable to use for compounds that are unstable or have high

boiling points, such as nucleotides and keto acids and often, complex derivatiza-

tion methods are required, thereby restricting the range of hydrophilic metabolites

which can be analyzed (Hu et al., 2020). Therefore, more and more analysis of

hydrophilic metabolites is now also being performed by LC-MS.

The traditional reverse phase columns which are widely used for lipid analysis

cannot retain hydrophilic metabolites, as the nonpolar stationary phase cannot

form strong interactions with these metabolites. However, a variety of new strate-

gies using different stationary phases and additives to mobile phases have been

developed, allowing for broader and more in-depth analysis of these compounds.

Wang et al., developed a 2D LC method using both a reverse phase C18 column

and a T3 column to be able to separate short-chain, medium-chain, and long-

chain Coenzyme A esters (Wang et al., 2017). The T3 column is composed of a

trifunctional C18 alkyl phase at a low-ligand density, allowing the metabolites to

more easily access the pore structure of the material and therefore greatly improv-

ing the retention of polar compounds. However, this interaction is still not able to

retain small hydrophilic metabolites (Hu et al., 2020). Currently the column

which can retain the largest number of hydrophilic metabolites is the hydrophilic

interaction liquid chromatography, HILIC, which was initially proposed in 1990

by Andrew Alpert (1990). HILIC columns consist of polar silica gel (Hemström

& Irgum, 2006) which can be modified with functional groups such diol, amide,

aminopropyl, and zwitterionic compounds (Jandera & Janás, 2017; Periat et al.,

2013), while the mobile phase is an organic solvent containing 2%�3% water.

The metabolites partition into the aqueous component of the mobile phase which

then forms a layer on the surface of the stationary phase, aiding retention

(Jandera, 2008; Wikberg et al., 2011). Recent studies suggest that HILIC columns
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modified with zwitterionic sulfobetaine allow for analysis of a wider array of

metabolites as well as better chromatographic peak shape and resolution com-

pared to underivatized HILIC columns (Sonnenberg et al., 2019). Even with these

improvements in metabolite coverage and retention, poor peak shape and low sen-

sitivity is still a problem in the analysis of phosphorylated metabolites and

organic acids. This can be improved by reducing the chelation between these

metabolites and metal ions by using medronic acid in the mobile phase (Hsiao

et al., 2018).

It is clear that in order to analyze a broad range of both hydrophilic metabo-

lites and hydrophobic lipids, even if a double extraction method is optimized, to

be able to separate and identify the largest number of molecular species different

chromatographic strategies need to be employed. Therefore, maximizing the

amount of biological material analyzed in order to elucidate metabolic pathways

and networks through the use of cell culture based models that closely reflect

more complex in vivo models is necessary at least as a first step in identifying

important nodes in pathways.

Analysis of metabolic processes including metabolic flux
Metabolic processes, pathways, and networks can be elucidated by tracking the

metabolic flux of lipids and metabolites in cells of interest. This is critical for the

understanding of dysregulation of these processes in pathological conditions and

consequently the identification of therapeutic targets to correct these disturbances.

Pulse-chase experiments can be used to track the fate of metabolites and lipids, as

well as to discover novel metabolites. To do this, lipids tagged with a variety of

functional groups such as fluorophores, different numbers of deuteriums or other

natural isotopes such as 13C, or alkyne lipids which can later be “clicked” with

other functional groups can be used. As an example, the application of mamma-

lian cell culture together with metabolic labeling approaches and differential

metabolic analysis was used to discover a novel metabolic pathway for neurotoxic

1-deoxysphingolipids, thus elucidating the reason for increased levels of these

lipids in pathological conditions like diabetic sensory polyneuropathy (Alecu,

Tedeschi, et al., 2017). Pulse-chase experiments with deuterated 1-

deoxysphingolipids led to the discovery of a novel metabolic pathway involving

eight never-before measured lipid metabolites (Alecu, Othman, et al., 2017).

1-Deoxysphingolipids are cytotoxic atypical sphingolipids which are impli-

cated in the pathology of the inherited neuropathy, hereditary sensory neuropathy

type 1 (HSAN1) and diabetic sensory neuropathy. Due to their molecular struc-

ture it was always thought that they are “dead-end” metabolites with no

metabolic exit point, thereby continuously accumulating to toxic levels. Alecu,

Othman, et al. (2017) demonstrated that this was not the case by treating

mouse embryonic fibroblasts with a pulse of d3-labeled 1-deoxysphinganine, an
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upstream 1-deoxysphingolipid, for 2 hours. The “pulse” media was then replaced

with fresh media without d3-deoxysphinganine for a chase period of 0, 1, 4, 8,

24, and 48 hours. Both the media and the cells were collected at these time points.

It is important to note here that sample collection has to be performed as fast as

possible to immediately block all enzymatic processes and prevent modifications

of metabolites. Therefore, cells and media must be stored on ice/frozen as soon as

they have been collected. The collected cell media should be lyophilized before

lipid extraction. This step is necessary in order to maintain the appropriate aque-

ous/organic solvent proportion for lipid extraction without having to extract the

media from one plate in multiple batches due to the large volume collected. After

lyophilization, the media is re-suspended in the appropriate amount of aqueous

phase for example, 200 μL. It is very important here to note the volume of the

media lyophilized for normalization of lipid/metabolite levels. Once the lyophi-

lized media is re-suspended, one can proceed with a metabolite or typical lipid

extraction such as a Bligh and Dyer extraction described earlier.

The cells are harvested by trypsinization, followed by centrifugation, re-

suspension of the pellet in PBS in order to wash off any media which could affect

the levels of metabolites/lipids measured, and then cell counting. As with keeping

track of the amount of media, cell counting is necessary for normalizing the

amounts of metabolites/lipids. If cells are harvested by trypsinization plus addi-

tion of stop media, it is necessary to pellet the cells, remove trypsin 1 media,

then wash/re-suspend in PBS and pellet again such that lipids in the cell media

are not contributing to what is measured in the cells. Detachment of all cells from

the plate should be visually confirmed before proceeding with the next steps.

There are a variety of other options for cell harvesting, such as scraping adherent

cells of the plate in PBS. However, one needs to consider the “harshness” of their

harvesting method as it could lead to cell lysis, which would result in inaccurate

cell counts and thereby less accurate final metabolite/lipid quantification. A “soft-

er” harvesting technique would be the addition of 10 mM EDTA at 37�C for a

total of 10 minutes (Ziemanski et al., 2020). A disadvantage of softer techniques

is that all cells may not detach from the plate, thereby decreasing the amount of

total lipids and metabolites. This could lead to the inability to measure or quantify

these low abundance lipids if their quantities are below the lower limit of detec-

tion or quantification.

The next step following the collection of cells and media is the extraction of

lipids and metabolites for analysis. Alecu, Othman, et al. (2017) chose to perform

an acid-base hydrolysis lipid extraction on both the media and the harvested cells

in order to remove the N-acyl fatty acid of the 1-deoxysphingolipids. This proto-

col would also remove the head group of endogenous lipids such as sphingolipids.

The acid hydrolysis specifically breaks the N-acyl chain, whereas the base hydro-

lysis leads to a release of the O-linked phosphoester or carbohydrate head group.

Five hundred microliters of methanol containing 200 pmol of internal standards

(D7 labeled sphinganine and sphingosine, the 2 kinds of C18 sphingoid bases)

were added to each sample (cell pellets or lyophilized medium re-suspended in
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200 μL PBS). Internal standards are necessary in order to account for different

extraction efficiencies and to monitor method-accuracy drifts of the MS method.

Internal standards selected should not be endogenously present in the sample, and

should be different from the labeled lipids/metabolites used for the metabolic flux

experiments. If measuring levels of endogenous lipids, at least one internal stan-

dard should be used for each lipid subclass of interest.

For the acid hydrolysis, the sample was incubated with methanolic hydrochlo-

ric acid (1N HCl/10M water in methanol) for 12�15 hours at 65�C. Next, 40 μL
KOH (5M) were added to neutralize the acid, followed by the addition of 4

volumes of 0.125M KOH in methanol for base hydrolysis, 1 volume of chloro-

form, then 0.5 mL of chloroform and 0.5 mL of alkaline water (Penno et al.,

2010). The sample should be vortexed after each step. The aqueous and organic

phases are then separated by centrifugation (12,0003 g, 5 minutes). The upper

aqueous phase is aspirated, and the lower phase is washed 2 more times with

alkaline water in order to remove any remaining contaminants from the organic

phase (chloroform) containing the lipids. The chloroform phase is then evaporated

under N2, and the dried lipids should be stored at 280�C until analysis by

LC-Ms.

In this case the authors chose to perform the acid-base hydrolysis because

they were interested in the total sum of all the lipids with the deuterated 1-

deoxysphingoid base backbone in order to be able to monitor the total amount of

these lipids. The idea was that if these lipids are a metabolic dead-end, the total

sum of exogenously added labeled 1-deoxysphingolipids should be constant.

Without the acid-base hydrolysis, some of the low abundance lipids formed, such

as a 1-deoxyceramide with an 18:1 N-acyl chain may be below the lower limit of

detection/lower limit of quantification. If many of these low abundance species

were missed, this would have made it impossible to monitor the total sum.

Another instance where the user may choose to perform an acid-base hydrolysis

lipid extraction would be studying host-pathogen interactions and determining

which lipids are produced by the host and which are produced by the pathogen,

wherein this protocol would allow for an in depth analysis of the sphingoid base

backbone which could differ in length or branching in the pathogen vs the host

and may elucidate a potential drug target in the lipid pathway which is host-

specific (Lochnit et al., 1997).

There is also the option of simultaneous cell harvesting and extraction.

Ziemanski et al. (2020) used the Folch extraction method, adding premixed chlor-

oform�methanol (2:1 v/v, 3 mL), prechilled to 220�C, directly to the petri dish

surface with adherent human meibomian gland epithelial cells, and the cells were

then scraped off with a stainless steel scraper. Although the benefit of this strat-

egy is that it is much higher throughput than first harvesting the cells, followed

by extraction, there are a few factors which need to be considered if undertaking

such a protocol. Firstly, the leaching of plastic upon addition of organic solvents

to cell culture plates needs to be considered, which would interfere with the

detection of metabolites/lipids by MS. Therefore, the cells would need to be
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grown in glass dishes. Furthermore, cell counting would present an even bigger

problem here than with only cell scraping, as chloroform has been shown to lead

to rapid cell lysis (Sapcariu et al., 2014; Vellaichamy et al., 2010).

Once lipids are extracted, they can be identified and quantified by LC-MS as

described earlier. There is an optional step of derivatizing lipids by tagging them

with specific functional groups before LC-MS analysis. This option is useful for

lipids that cannot be efficiently ionized, which is necessary for detection by the

MS, or if the lipids lack characteristic fragmentation patterns in tandem MS (MS/

MS) analysis which would be necessary for identification of the lipid species

(Yang & Han, 2016). In the current example Alecu et al., chose to derivatize the

lipids with o-Phthalaldehyde (50 mg/mL in EtOH) in a 0.005:1:99 v/v/v with 3%

boric acid and 2-mercaptoethanol in order to improve ionization, and conse-

quently detection, of the lipids (Alecu, Othman, et al., 2017).

Alecu et al. wanted to monitor the time-dependent conversion of 1-

deoxysphinganine to its downstream product 1-deoxysphingosine, and to deter-

mine whether the total amount of labeled 1-deoxysphingolipids remained constant

with time (Alecu, Othman, et al., 2017). This would confirm that there was no

further metabolic or catabolic processing of these lipids. The authors chose to col-

lect the cell media in order to determine whether the cells were secreting any of

the deuterated 1-deoxysphingolipids which elucidated whether the change in total

labeled lipid levels was due to this and not to downstream metabolism. The user

could also choose to collect cell media and extract metabolites/lipids in order to

monitor changes in the secretome upon treatment with different compounds such

as drugs or toxins, or upon mutations in genes coding for specific enzymes. If

analyzing the levels of unlabeled, endogenously produced lipids secreted into the

media, the use of synthetic serum-free media should be considered such that the

amount of lipids already present in the media does not interfere with the identifi-

cation/quantification of secreted lipids.

Alecu et al. found that the total levels of labeled 1-deoxysphingolipids

decreased over time, while the amount of labeled lipids in the media was con-

stant, indicating that further metabolic conversion of these lipids was occurring

(Alecu, Othman, et al., 2017). In order to identify these unknown downstream 1-

deoxysphingolipid metabolites, the authors used differential analysis of mass

spectral data as well as visual analysis of the total ion chromatogram to identify

new spectra appearing over the time course of the pulse-chase experiments. For

this, the software Sieve from ThermoFisher was used, wherein multiple replicates

of two conditions were compared in order to determine the appearance of new

lipid molecular species. The basic workflow for this has been previously

described (Snyder et al., 2013). A variety of different filters were applied to per-

form this analysis, including the m/z range and retention time expected for poten-

tial lipids of interest, odd-numbered m/z ratios which would indicate that the

compound potentially carried the 3 deuterium label, as well as the criterium that

the potential molecular formulas generated based on the m/z identified should

contain one sulfur coming from the o-phthalaldehyde solution used for
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derivatization, since all lipids of interest would have been derivatized. The total

ion chromatogram generated for each sample was also visually analyzed scan by

scan using the same criteria in order to identify any novel peaks. Sieve software

has now been updated to Compound Discoverer which has further features such

as pathway analysis.

Another labeling approach was used to elucidate a different aspect of 1-

deoxysphingolipid metabolism. In order to determine whether the newly identified

downstream metabolites were also formed from de novo synthesized 1-

deoxysphingolipids, and not just from those added exogenously, labeled substrates

needed for 1-deoxysphingolipid biosynthesis were used (Alecu, 2016). Cells were

treated with deuterated versions of both substrates necessary for the synthesis of

1-deoxysphingolipids, methyl-d3-palmitic acid and d4-alanine. Methyl-d3-

palmitic acid was given as a 1:1 molar complex with fatty acid-free BSA in order

to prevent the fatty acid from sticking to the cell culture dish. For this experiment,

1-deoxysphinganine and 1-deoxysphingosine with mass offsets for 16, 15, 14,

13, 12, 11, as well as the unlabeled mass M, were monitored in order to be

able to analyze 1-deoxysphingolipids formed from conjugation of d3-palmitic

acid (13), d4-alanine (13, as one deuterium is lost upon conjugation), 16 (when

both labeled substrates were conjugated), as well as the natural isotopologues aris-

ing from this labeling. A similar kind of deuterium exchange assay was performed

with 11,11,12,12-d4 palmitic acid in order to determine whether the position of

the double bond which is inserted upon the conversion of 1-deoxysphinganine to

1-deoxysphingosine is C14, which is the double bond position in canonical sphin-

golipids (Alecu, 2016). 1-Deoxysphingolipids with mass offsets of 15, 14, 13,

12, 11 and the unlabeled mass M were analyzed in order to monitor for double

bond insertions. Upon being conjugated with alanine, the product formed would

be 13,13,14,14-d4-labeled 1-deoxysphinganine. If the double bond was inserted at

C14, this would entail the loss of a deuterium at this position, resulting in a d3-

labeled 1-deoxysphingosine (meaning a mass offset of 13), compared to the d4-

labeled 1-deoxysphinganine (mass offset of 14), which was indeed the case

Fig. 12.1.

As illustrated, metabolic labeling and flux experiments in cells can be used to

analyze many different aspects of metabolism ranging from the structure of com-

pounds, the substrates used to form metabolites and lipids, as well as novel meta-

bolic pathways. In the bigger picture, this could help elucidate the reason for

metabolic dysregulations in pathological conditions, or under different treatment

conditions.

Methods and protocols for isolation and metabolomics of small
extracellular vesicles from cell culture supernatants

EVs, including small extracellular vesicles (sEVs) or exosomes are naturally

secreted in culture by almost all eukaryotic cells except mature red blood cells
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under both physiological and pathological conditions (Pegtel & Gould, 2019).

sEVs are a subpopulation of membrane-bound, 30�150 nm in diameter vesicles

that are formed in the multivesicular bodies, which fuse with the plasma mem-

brane to release sEVs in the extracellular milieu. These nanovesicles harbor a

variety of bioactive cargo of cellular components such as nucleic acids

(microRNA, mRNA, circular RNA and noncoding RNA), proteins (cytokines,

chemokines, receptors and ligands), lipids and metabolites that represent distinct

“molecular signatures” of their parental cells (Kalluri & LeBleu, 2020).

Therefore, sEVs provide a snapshot of crucial molecular information about the

health of its parental cell. Recently, sEVs have emerged as important intercellular

communication vehicles exchanging crucial information not only between neigh-

boring cells but also distant organs (Théry et al., 2009). They are stamped with

“unique addresses” that dictate their cellular and organ specificity. Increasing evi-

dence demonstrates that sEVs can selectively transfer their cargoes into recipient

cells and contribute to the modulation of a wide range of biological processes,

including pro-survival, antiinflammatory, antitumorigenic, regenerative and regu-

lation of immune responses. Over the past decade, sEVs have gained clinical util-

ity and are being harnessed for their intrinsic therapeutic properties and also

being explored as nanodevices for drug delivery and biomarkers of disease

(Andaloussi et al., 2013; Fais et al., 2016).

FIGURE 12.1

The majority of de novo formed 1-deoxysphingosine does not have the double bond

inserted at C4. The lines on the graph represent labeled upstream 1-deoxysphinganine

(blue) and downstream 1-deoxysphingosine (red) after incorporation of 11,11,12,12-d4

palmitic acid. The highest relative amount of de novo formed 1-deoxysphinganine has a

14 label coming from the d4-palmitic acid. However, the highest relative amount of 1-

deoxysphingosine has a 13 label, which indicates that one of the deuteriums was lost

from the C12 of the palmitic acid (which would become C14 upon condensation with

alanine in the de novo formation of the upstream 1-deoxysphinganine). This would only

occur upon insertion of the double bond at C14, and not at C4. 1-deoxySA, 1-

deoxysphinganine; 1-deoxySO, 1-deoxysphingosine.
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Under in vitro conditions, cells produce a heterogeneous population of EVs,

such as sEVs or exosomes (30�150 nm), microvesicles or ectosomes

(100�1000 nm) and apoptotic bodies (1�5 μm) which accumulate in cell culture

supernatants (conditioned media) (Raposo & Stoorvogel, 2013). These three types

of EVs not only vary in size but also differ in their biogenesis, cargo content and

regulation of cellular mechanisms. Recently, it has been demonstrated that cells

also release distinct subpopulations of sEVs with different biophysical properties as

well as proteomic and RNA repertoires, further emphasizing the heterogeneity of

EVs (Willms et al., 2016). Therefore, it is crucial that prior to any metabolomics or

lipidomics studies, specific populations of EVs are purified from the biological

sample using differential isolation methods. With recent advances in science and

technology, many different techniques exploiting the unique physicochemical

and biochemical characteristics of EVs, such as size, shape, mass, buoyant density,

and molecules on EV surface have been developed for the isolation and purification

of sEVs (Sidhom et al., 2020). Here we will describe two protocols that capitalize

on the EV properties, such as size and buoyant density for the isolation of sEVs:

(1) ultracentrifugation (UC) method, which employs differential centrifugation steps

and still remains the gold-standard method of sEV isolation; (2) tangential flow fil-

tration (TFF), an emerging new technique that is coupled to membrane filtration

and flow to obtain clinical grade sEVs preparations with high yield, purity and

integrity. Both methods are capable of processing large volumes of cell culture

medium, for example, for UC several hundreds of liters and for TFF up to several

thousand liters. The first part of this section describes the most common protocols

used to isolate sEVs, and the second part describes different methods for character-

izing and analyzing the purity of the isolated sEVs preparation.

Cell culture for isolation of small extracellular vesicles
Most of the mammalian cells are cultured in media supplemented with 10%�
20% fetal bovine serum (FBS), a rich source of nutrients and growth factors,

which is important for cell survival. Small EVs are found in almost all biological

fluids, including serum (Lässer et al., 2011) and FBS contains many different

types of bovine EVs. Since bovine EVs in culture media are bioactive and their

presence can influence experimental results (Kornilov et al., 2018; Shelke et al.,

2014), they are often removed from FBS prior to addition to the culture media

(Théry et al., 2006). Thus far, no standardized protocol for EV-depletion of FBS

exists and different laboratories use different depletion protocols. Briefly, cell cul-

ture media containing FBS is centrifuged for at least 2 hours at 100,0003 g to

remove sEVs. The supernatant is filtered using a 0.22 μm vacuum bottle top filter.

Some cell types can be grown in the absence of serum and culture medium with-

out FBS can be used. Several commercial serum alternatives are available, how-

ever caution should be exercised in selecting these alternatives for metabolomic
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studies as these may contain polyethylene glycol which can interfere with NMR

spectra. Cells are usually grown in T-175 flasks at 70%�80% confluency (a total

of 20�40 3 106 cells/sample or equivalent to 1�2 mg protein/sample) in the

presence of serum and then media is changed to EV-depleted media or serum-free

media for 24 hours. The user is recommended to include a culture media alone

control incubated for 24 hours in the absence of cells. Following incubations, cell

culture supernatant (conditioned medium) is collected and subjected to UC or

TFF to isolate sEVs as described below.

Isolation of small extracellular vesicles using
ultracentrifugation
The traditional EV isolation methods employing UC, namely differential UC and

density gradient UC utilize EVs properties, such as size, mass and buoyant den-

sity for the separation and purification of sEVs (Romano et al., 2020). Table 12.3

provides the comparison of the inherent advantages and limitations of each

method which are important to keep in mind while designing an experiment.

Differential ultracentrifugation

The common method of sEVs isolation is UC, which still remains the gold-

standard technique for EV isolation. In brief, conditioned media is sequentially

subjected to increasing centrifugal forces and duration to pellet cells at 7003 g,

microvesicles at 24003 g and sEVs at 100,0003 g, as described (Čuperlović-

Culf et al., 2020; Kuo & Jia, 2017; Romano et al., 2020; Théry et al., 2006;

Witwer et al., 2013). The workflow for the purification of sEVs using differential

centrifugation is presented in Fig. 12.2 (top panel). All centrifugations should be

performed at 4�C. The low speed spins (,10,0003 g) gradually remove particles

with a high buoyant density such as cells, cell debris, apoptotic bodies, and pro-

teins aggregates, while the high speed spin (100,0003 g) sediments small EVs.

The sEVs pellet is washed once with 1 mL sterile 13 PBS and the 100,0003 g

step is repeated to obtain an sEVs pellet that can be further purified as below.

Density gradient ultracentrifugation

Although the differential UC EV isolation method provides a reasonably pure

sEVs population, it can also coisolate contaminants, such as aggregated proteins

and nucleic acids. Therefore, an extra step can be added using density gradient

UC to improve the purity of sEVs population (Abramowicz et al., 2016; Zhang

et al., 2014). Several gradient medias are available, however sucrose cushions and

iodixanol (OptiPrep) gradients coupled with differential UC is most commonly

used to isolate different EV populations based on their buoyant densities and
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Table 12.3 Standard strategies for isolation of small extracellular vesicles (sEVs).

Method Time Equipment Advantages Disadvantages

Ultracentrifugation,
differential
centrifugation 700,
2400, 10,000, and
100,0003 g

140�300 min Ultracentrifugation
equipment, rotors and
tubes

Isolation from reasonable volumes
(upto 1.5 L), low cost if access to UC
equipment, sEV cargo, that is protein
and RNA not affected

Equipment-dependent, laborious, time-
consuming, non-EV contamination, low
reproducibility, low yield, low purity, high
centrifugation forces cause structural
damage to sEVs, higher risk of
contamination and low-throughput (only six
samples fit in one UC spin)

Density gradient
ultracentrifugation,
sucrose or iodixanol
density gradient after
UC

280 min�2
days

Ultracentrifugation
equipment, rotors and
tubes. As well, sucrose
and iodixanol density
media

Pure sEVs population; No
contamination with viral particles, high
sEVs population purity and high
separation efficiency after iodixanol
UC

Equipment-dependence, low yield,
laborious, time-consuming and low-
scalability

Tangential flow
filtration

110�150 min Sterile hollow fiber
polyethersulfone
membrane filter with
specific molecular weight
cut-off

Pure sEVs population, high sEVs
structural integrity, fast, higher
reproducibility, better sterility, and
large-scale stable production

Lack of method validation, risk of the sEVs
being stuck in the membrane pores (filter-
plugging), loss of sample, various factors
affecting the filtration rate (e.g.,
temperature), and purified sEVs have small
quantity of exosomal proteins

Key advantages and disadvantages of the standard methods for the purification of sEVs are summarized.



mass (Araùjo et al., 2008; Graham, 1999). The workflow for the purification of

sEVs using density gradient UC is presented in Fig. 12.2 (bottom panel).

Isolation of small extracellular vesicles using tangential
flow filtration
Despite the wide use of differential UC for sEVs isolation, this method has major

limitations (Table 12.3). Therefore, improved techniques that increase sEVs yield,

integrity, scalability and reproducibility have been adapted for sEVs isolation

(Furi et al., 2017; Konoshenko et al., 2018). TFF is an emerging ultrafiltration

technique that couples membrane filtration and fluid flow for efficient isolation

and concentration of sEVs from large volumes of biological fluids (Fig. 12.3). In

brief, clarified conditioned media (after 700 and 24003 g centrifugation steps to

remove cells and cell debris) is concentrated and filtered at the same time using a

polyethersulfone hollow fiber filter with varying range of pore sizes or molecular

weight cutoff cartridges (10, 50 and 500 kDa) (Lee et al., 2020). The clarified

media is pumped using a peristaltic pump system. Multiple rounds of filtration

leads to the isolation and concentration of specific sEVs populations. For

instance, filtered culture media is concentrated B10 fold and in the final step cul-

ture media is exchanged with 1x PBS and further concentrated B5�10 fold.

FIGURE 12.2

Schematic representation of common strategies for the isolation and purification of small

extracellular vesicles. Flow-chart for the isolation and purification of sEVs based on

differential ultracentrifugation (Čuperlović-Culf et al., 2020) and density gradient

ultracentrifugation. sEVs indicate small extracellular vesicles.

Illustration created in BioRender (www.BioRender.com).
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Characterization of small extracellular vesicles

A large number of methods have been developed to assess the size, concentration,

integrity and purify of sEVs. The most common techniques include nanoparticle

tracking analysis (NTA), western blotting, scanning electron microscopy, transmis-

sion electron microscopy, cryo-electron microscopy, flow cytometry and

fluorescence-activated cell sorting (Gurunathan et al., 2019; Noreldin et al., 2021).

sEVs originating from a variety of different cell types share common structural and

functional characteristics, such as exosomal proteins, tetraspanins (CD9, CD63,

CD81), TSG101, Alix and flotillin-1, which can be detected using western blotting.

The NTA method (NanoSight and ZetaView) allows real-time visualization and

analysis of EVs based on the rate of Brownian motion of individual nanoparticles

(EVs) in solution and their ability to scatter light (Bachurski et al., 2019). Hence,

NTA allows the measurement of concentration and size distribution of EVs.

Metabolite extractions from cells and small extracellular vesicles

Extraction of polar metabolites using acetonitrile/water method. Metabolomics

analysis of the content of sEVs can be performed using MS methods presented

above or using approaches that were previously developed for cell and tissue

analysis with NMR-based metabolic profiling (Beckonert et al., 2007; Belle et al.,

2002; Lin et al., 2007). Since extraction parameters can influence the detection

and quantification of metabolites, it is important to consistently adhere to the

same extraction protocols to obtain optimum results and ensure experimental

reproducibility. The protocols described here can be used as a guide for the

FIGURE 12.3

Tangential flow filtration. Schematic representation of the principle of tangential flow

filtration for isolation and purification of small extracellular vesicles.

Illustration created in BioRender (www.BioRender.com).
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extraction of polar metabolites and the combined extraction of polar and lipo-

philic metabolites from cells and their sEVs harvested from the conditioned

medium of the same culture.

Polar metabolites are extracted using acetonitrile from cells, media and sEVs as

previously described (Čuperlović-Culf et al., 2020). Remove cell culture dishes

from the 37�C incubator and place them on ice slurry to slow down the metabo-

lism. Collect the conditioned medium which is then subjected to sEV isolation by

UC or TFF as described above. An aliquot of medium can be saved at 280�C for

the analysis of exometabolomics. All subsequent steps are carried out under ice-

cold conditions and making sure that cells and media never approach room temper-

ature. Harvest cells in ice-cold 5 mL of 13 PBS (Ca21 and Mg21 free) by gentle

scraping, transfer to 15 mL falcon tubes and centrifuge at 3003 g for 5 minutes at

4�C. Place tubes on ice slurry and aspirate the 13 PBS without disturbing the pel-

lets. Wash the pellets once again with ice-cold 5 mL of 13 PBS to remove any

residual medium. Hold the cell pellets on ice slurry for 5 minutes to keep metabolic

activity low. Subsequently, resuspend pellets in 1 mL of extraction solvent [50%

acetonitrile/50% water (vol/vol) mixture, prechilled at 220�C overnight], which

further quenches metabolism and lyses cells. Mix the suspension thoroughly by vor-

texing and transfer to eppendorf tubes. Centrifuge at 12,0003 g for 10 minutes at

4�C. After centrifugation, the suspension separates into supernatants (contains polar

metabolites) and a pellet of cellular proteins, lipids and debris. Transfer the super-

natants to fresh eppendorf tubes and evaporate the solvents from the samples under

a stream of nitrogen gas or using a SpeedVac concentrator. Alternatively, samples

can also be freeze-dried/lyophilized overnight. A similar protocol should be fol-

lowed for the extraction of intra-exosomal metabolites by adding 200 μL ice-cold

acetonitrile/water mixture to the 100,0003 g pellet. The dried samples can be

stored at 280�C until NMR analysis.

Extraction of combined polar and lipophilic metabolites using methanol/chlo-

roform/water method: Harvest cells as described above and resuspend pellets in

ice-cold mixture containing 2 parts methanol/0.8 parts water to quench metabolic

activity (Vuckovic, 2012). Vortex the suspension thoroughly to achieve good mix-

ing. Place samples on ice slurry and sonicate 3�5 times for 1 seconds each time

(Folch et al., 1957). Transfer suspension to glass tubes, add 1 part chloroform to a

total solution of methanol/chloroform/water (2:1:0.8) and vortex again. Add 1

part chloroform and 1 part water for a final solution of methanol/chloroform/

water (2:2:1.8) and vortex again. Hold the samples on an ice slurry for 15 minutes

or at 4�C overnight. Centrifuge at 10003 g for 15 minutes at 4�C. After centrifu-
gation, the suspension separates into three phases: an upper methanol/water phase

(contains polar metabolites), an interface of protein/cellular debris (protein disk)

and a lower chloroform phase (contains lipophilic metabolites). The protein disk

can be saved for proteomics analysis. Transfer the upper and lower phases into

fresh glass tubes and evaporate the solvents from the samples under a stream of

nitrogen gas. The dried samples can be stored at 280�C. The upper phase is used

for metabolomics and the lower phase is used for lipidomics studies. A similar
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protocol should be followed for the extraction of intra-exosomal metabolites and

lipids, adjusting the volumes accordingly.

Sample preparation and analysis with nuclear magnetic
resonance spectroscopy
Samples are prepared in NMR buffer (50 mM sodium phosphate buffer, pH 7.4,

in deuterium oxide, 0.1% 4,4-dimethyl-4-silapentane-1-sulfonic acid and 0.5 mM

sodium azide) and an internal standard solution (NMR grade). The standard solu-

tion is added at 10% of the total sample. For dried samples, reconstitute in

160 μL NMR buffer containing 16 μL standard and for liquid samples, mix

100 μL media with 60 μL deuterium oxide and 16 μL standard. Vortex samples to

mix thoroughly. Using gel loading tips, load approximately 10 μL of sample into

3 mm NMR tubes and proceed to NMR analysis.

Although a number of different nuclei can be measured in NMR metabolomics,

including 13C, 15N and 31P, 1H NMR spectroscopy measurements are the most signif-

icant for general metabolomics profiling and thus far the only approach used for the

analysis of sEVs. One dimensional (1D) 1H (proton) NMR spectra with water sup-

pression sequence (NOESY 1D) provides a good combination of speed, excellent

water suppression and good lineshape for quantification. NMR experimental techni-

ques and possible pulse sequences that are generally used in metabolomics have been

previously reviewed (Čuperlović-Culf et al., 2010; Ranjan & Sinha, 2019) and all the

methods for NMR metabolomics described in Chapter 5, Nuclear Magnetic

Resonance in Metabolomics, can be applied in this case as well.

Cell culture metabolomics and lipidomics data analysis
Data analysis method selection, application and interpretation depends on the level

of background knowledge, metabolomics coverage and sample set size as well as

specific goals of the study. Although the majority of analytical methods can be uti-

lized for knowledge discovery, presentation or model development from metabolo-

mics and lipidomics data regardless of the biological source, analysis of cell culture

data provides some unique opportunities including a possibility for analysis of cells,

organelles and media for the same system in a highly controlled environment, pos-

sibly with isotopic labeling and flux analysis. Metabolomics data analysis is

described in Chapters 8�11. Here we will only show examples of analysis either

specifically applied to cell culture metabolomics or lipidomics or methods that can

provide some unique benefits to the cell culture application. This includes:

1. utilization of cell modeling for design and optimization of cell cultures

including optimization of growth conditions or productivity in cell

bioreactors;
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2. utilization of cell culture metabolomics for the development of Artificial

Intelligence (AI) methods for optimal design and prediction of behavior of

cell and gene therapy modalities including cells and exosomes as therapy

carriers.

Both of these groups of applications include analysis of metabolomics data,

determination of major metabolic pathways and networks, simulation of cell

metabolism and linking these models and data within machine learning models of

cell metabolism and cell growth conditions and these steps will be described in

some detail below.

Cell culture metabolomics and cell modeling for the design and
optimization of cell culture applications

Application of cells for the production of biologics, vaccines or for bioprocessing

has transformed therapy fabrication and provided avenues for synthetic biology uti-

lization. A bioprocess is an extremely complex interplay of numerous factors that

requires regulation and optimization while still lacking complete understanding.

Traditionally around 10 biochemical molecules are monitored including oxygen,

CO2, glucose as well as some toxic by-products, for example, lactate, however

these are insufficient to track cell metabolism, growth and productivity.

Metabolomics and lipidomics can provide additional quantification of tens to hun-

dreds of metabolites in media or cell extracts providing information about the cells’

oxidative state, cell growth or death, metabolic needs or toxins, active pathways,

etc. Accordingly, metabolomics can provide a way for finding the perfect media for

each application; identify clonal instabilities early in the process and help provide

continuous process monitoring for optimization of growth. As an example, the most

popular mammalian cells used in bioprocessing are Chinese hamster ovary (CHO)

cells and human embryonic kidney 293 cells (HEK293). Although CHO cells

remain the most often used, they can result in nonhuman posttranslational protein.

Thus, HEK293 is becoming a predominant cell line for expression of recombinant

proteins and biologics providing appropriate human cell glycosylation and protein

folding appropriate for in vivo use (Dietmair et al., 2012; Petiot et al., 2015) mak-

ing this cell line of particular relevance in biotechnology. HEK293 cells are

explored as a possible way to provide production of difficult-to-express proteins as

well as next-generation biologics including bispecific antibodies and weaponized

antibodies. HEK293 cells grow easily in suspension serum-free culture, reproduce

rapidly, and produce high levels of protein. In this context, metabolomics can be

used for testing of gene editing methods, cell productivity and health as well as

analysis and optimization of HEK293 growth for biomanufacturing. Metabolomics

analysis of HEK293 cells have shown major influence of media on cell metabolism

and the measured cell secretome (Daskalaki et al., 2018) necessitating optimization

of media for specific application. Metabolomics combined with models of specific

cell lines used in the bioprocessing can be directly used in this process however
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modeling of metabolism in cell lines requires determination of significant pathways

or metabolic interaction network, followed by the development of mechanistic,

machine learning of hybrid models.

Determination of major metabolic pathways or network from
metabolomics or fluxomics data

Cell function, growth or productivity is largely regulated through the metabolism

and metabolites. Metabolic processes are driven through allosteric regulation,

posttranslational modifications, inter-compartmental material balance, and

signaling control (O’Brien et al., 2020). Mapping metabolomics data on its own

or combined with other omics data onto cellular pathways or determination of

data-driven interaction networks can be used to establish significant pathways and

regulation mechanisms under different conditions. Several highly advanced, free-

ware pathway analysis tools (Table 12.4) can be used to map metabolomics data

and determine statistical significance of the representation of metabolic pathways

by a selected metabolite set with or without concentration information.

Mapping of the omics data on the metabolic pathways provides a static repre-

sentation of relevant processes. Although these methods do not provide any pre-

dictive power, some of these tools provide a sophisticated way to determine

major metabolic differences between conditions or cell types. As an example

Lilikoi analytical method (AlAkwaa et al., 2018) provides metabolite ID match-

ing, feature selection through information gain calculation, ML classification

modeling and pathway deregulation score determination. It also transforms

metabolite-sample matrix into pathway-sample matrix providing in this way per-

sonalized pathway mapping. In another example, MetExplore (Cottret et al.,

2018), provides statistical information about the organism-specific metabolic net-

work coverage and gives interactive visualization of metabolomics data on the

whole metabolic network, selection of pathways or specific reactions. All path-

way mapping methods, by their design only give mapping onto the known path-

ways included in one of many databases and in this way do not allow

determination of novel interactions between biological molecules.

Network analysis in cell culture metabolomics

Cell culture metabolomics provides data that can be utilized for novel mechanistic

insight about biological processes under different conditions, stimuli or pheno-

types and this move away from the known processes mapping into a hypothesis

generation can be a major advancement for omics and systems biology (Rosato

et al., 2018). A powerful approach for the data-driven metabolic mechanism

analysis can be accomplished through development of interaction, that is correla-

tion, statistical or clustering networks. A biological network in this context is a

graphic representation of features (metabolites or lipids)—nodes and their

437Cell culture metabolomics and lipidomics data analysis



Table 12.4 Pathway and Network analysis tools in cell cultures
metabolomics.

Method Application
Availability and
references

Lilikoi Group of applications in R for: mapping of
metabolites to pathways, dimension
transformation to personalized pathway-
based profiles using pathway deregulation
scores;, feature selection module, and
classification and prediction module, which
offers various machine learning classification
algorithms.

https://github.com/
lanagarmire/lilikoi (AlAkwaa
et al., 2018)

MetPA Web-based tool for the analysis and
visualization of metabolomic data within the
biological context of metabolic pathways
combining several advanced pathway
enrichment analysis procedures with the
analysis of pathway topological
characteristics to help identify the most
relevant metabolic pathways involved in a
given metabolomic study. The results are
presented in a network visualization system.

http://metpa.metabolomics.
ca

IMPALA Pathway overrepresentation and enrichment
analysis with expression and/or metabolite
data. Both gene and metabolite information
can be either a list for overrepresentation
analysis or values in different conditions for
enrichment analysis.

http://impala.molgen.mpg.
de/

MBRole Overrepresentation, enrichment, analysis of
categorical annotations for user provided
sets of compounds. Provided categorical
annotations correspond to biological and
chemical information available in a number
of public databases and software. Provided
is also information about metabolite-protein
interaction.

http://csbg.cnb.csic.es/
mbrole2/index.php

MetExplore Web-based collection of interactive tools for
metabolic network curation, network
exploration and omics data analysis. In
particular, it is possible to curate and
annotate metabolic networks in a
collaborative environment with the
contextualization of metabolic elements in
the network and the calculation of
overrepresentation statistics.

https://metexplore.toulouse.
inrae.fr/index.html/

Pathway and Network determination from metabolomics data can be applied to cell cultures
metabolomics.
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associations—edges. Network can be represented as an adjacency or connectivity

matrix of interactions describing the strength of the relationships between any

two nodes. In the cell metabolomics context network can represent interactions

within cells, extracellularly or across the cell membrane and can be based on

topology, stoichiometry, directionality or kinetics of the metabolome. Several

reviews have recently described network analysis methods including applications

to metabolomics in some detail (Perez De Souza et al., 2020; Rosato et al., 2018;

Toubiana et al., 2019) and any of these methods can be applied to cell culture

metabolomics data. Several examples that have shown utility in cell culture analy-

sis are outlined in Table 12.5.

Metabolic networks based on correlation analysis can indicate rapid equilib-

rium between metabolites or presence of conserved chemical groups. They are

particularly useful for analysis of changes between different conditions, treat-

ments or phenotypes. Correlation network requires establishment of threshold of

relevant correlation with several authors showing that correlation of 0.6 and P

value of 0.01 provide good threshold levels indicating lower bound for weak cor-

relations in metabolomics data (Camacho et al., 2005; Ghini et al., 2015; Saccenti

et al., 2016). It is important to point out however that lack of strong correlation

does not necessarily mean lack of proximity between metabolites in the metabolic

pathways and that strong correlation can be observed for metabolites that are met-

abolically distant. Therefore, even in the context of cell culture analysis, correla-

tion networks may not be sufficient for reverse engineering of metabolic

pathways (Rosato et al., 2018). The Debiased Sparse Partial Correlation algorithm

(DSPC) was developed as an attempt to regularize correlation methods. DSPC

uses a desparsified graphical lasso modeling procedure and assumes that the num-

ber of real connections in the network is much smaller than what is determined

from correlation analysis. DSPC is implemented in MetScape within Cytoscape

(Basu et al., 2017; Perez De Souza et al., 2020).

A number of methods that were originally developed for gene and protein net-

work determination and analysis are finding their place in metabolomics. As an

example weighted gene correlation network analysis (WCGNA) can be used to

determine modules, clusters of highly correlated features and finding “module

eigengene” a representative feature summarizing module profile or an intramodu-

lar features that relates modules to one another and to sample trait (Langfelder &

Horvath, 2008). WCGNA provides dissimilarity profiles through analysis of topo-

logical overlap matrix (TOM) that makes the network less sensitive to distant

connections or connections that are missing due to noise. TOM is related to corre-

lation between metabolite pairs. TOM and thus WCGNA assumes scale-free

topology which does not apply to all metabolic networks (Broido & Clauset,

2019; Rosato et al., 2018). Use of WCGNA in metabolomics, often with low cov-

erage, requires some modifications to the original method with the detailed tuto-

rial provided for this application by Pei et al. (2017).

A number of other methods have also been developed for gene network

determination with few examples of their use in metabolomics, albeit thus-far
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Table 12.5 Interaction network methods in cell cultured metabolomics.

Network
approach/
availability Method in brief Advantages Disadvantages

Correlation or
relevance: Pearson,
Spearman or
Distance correlation
methods Available
in Python, R, etc.

Pearson—measure
of the linear
association between
variables;
Spearman—
nonparametric
measure of rank
correlation;
Distance—
dependence of two
random vectors of
possibly different
dimension

Inferred network is
a good description
of the physiological
state of the system

Cannot be used to
reverse engineer
metabolic pathways

Weighted gene
correlation network
analysis—WCGNA
Available as R
package.

Calculates
dissimilarity profiles
based on
topological overlap
matrix based on pair
correlations between
metabolites.

Less sensitive to
spurious
connection and
missing
connections due to
noise

Assumes power-
law probability
distribution for
correlation and
scale-free network
design which does
not apply to all
networks

Context likelihood of
relatedness—CLR
Available in minet
Bioconductor
package

Uses Mutual
Information (MI) to
calculate similarity
between pairs of
variables and infers
direct interactions by
accounting for the
local context for
each interaction.

CLR does not
require threshold
as it prunes
spurious
interactions from
network by its
design.

High variability for
smaller sample sets
(,100 samples)

Algorithm for the
reconstruction of
accurate cellular
networks—
ARACNE Available
in minet
Bioconductor
package

MI is calculated for
each pair of nodes
and the interactions
are pruned by
considering each
triplet of edges and
removing the
weakest edge as it
is considered as an
indirect interaction.

Good at
reconstruction of
the backbone of
association
network

Produces very
sparse network
missing many
significant
associations

PCLRC available at:
http://download.
systemsbiology.nl/

Combination of CLR
and iteratively
sampling of dataset
wherein each
iteration a subset is
chosen and a
weighted adjacency
matrix is determined
using correlation
calculations. Final
network is
calculated from the
average of iterations.

Effective at
discriminating
between direct and
indirect
correlations

Requires
thresholding by
user (usually value
of 0.9 is imposed)
and larger number
of samples

Examples of methods for determination of interaction network from data with some of their
advantages and disadvantages in the analysis of metabolomics data.

http://download.systemsbiology.nl/
http://download.systemsbiology.nl/


rarely in cell culture metabolomics such as Algorithm for the Reconstruction of

Accurate Cellular Networks (ARACNE) and Probabilistic Context Likelihood

of Relatedness Algorithm (PCLR) (Suarez-Diez & Saccenti, 2015). Based on

detailed analysis of the network reconstruction performance Suarez-Diez and

Saccenti (Suarez-Diez & Saccenti, 2015) have shown that as many as 100�400

samples may be necessary to obtain a stable network estimate making utiliza-

tion of these methods in cell culture applications challenging. With the devel-

opment of methods that can profile large numbers of cells (e.g., single cell

metabolomics) (as described in Chapter 15: MALDI�Mass Spectrometry

Imaging: The Metabolomics Visualization) or high throughput metabolomics or

lipidomics, application of network design methods will likely become more

relevant.

Mechanistic modeling for cell culture optimization, design, and
information gathering

Pathway mapping as well as network determinations provide static representation

of the metabolic interactions in the system without possibility to predict behavior

under changing conditions. Metabolic models can provide a way to explore meta-

bolic complexity and systematically investigate significant cellular properties for

a variety of cell culture applications. Importantly, models can be used to infer

processes in cells that were not directly measured. Longitudinal cell culture meta-

bolomics and lipidomics can be utilized for the development and optimization of

in silico models of cellular metabolism either aiming to explain observed effects,

determine possibly significant targets or to provide predictive models for cell or

media design. One of the most significant applications of cell metabolomics and

metabolism modeling is the optimization of cell and gene therapies particularly

through the optimization of bioreactor production (Selvarasu et al., 2012) or for

the design of predictable, optimized cells.

Numerous publications have discussed in great detail metabolism modeling

approaches based on either kinetic and ordinary differential equation models or

genome scale metabolic models and the readers are referred to those (Almquist

et al., 2014; Covert, 2017). Cell culture metabolomics provides a unique oppor-

tunity for time-course analysis of metabolites in intra or extracellular space as

well as cellular or extracellular organelles possibly augmented with the utiliza-

tion of isotopic labeling. Access to time-course information combined with the

investigation of flux for isotopic labels can be used for the development of pre-

dictive models and simulations of metabolic pathways as well as genome scale

networks. Feeding cells with isotopically labeled nutrients, measuring the isoto-

pic labeling of extra and intracellular metabolites, and computationally inferring

flux through the Metabolic Flux Analysis is the most direct approach for deter-

mining metabolic flux through metabolic network and pathways on a whole-cell

level (Sauer, 2006; Wiechert, 2002). In this way cell culture metabolomics can
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help in both bottomup or forward modeling as well as topdown or inverse

approach by providing either data for the determination of model reaction con-

stants, for model parameterization or for determination of network structures for

the model.

Mathematical modeling of cell metabolism is an essential approach for gain-

ing system-level understanding of cell behavior and development of predictions

of cellular behavior, ultimately providing methods for the design of cells of

desired properties or cell growth conditions. Mathematical modeling including

deterministic kinetic modeling and stochastic and statistical modeling, have

been widely used in the application of cell cultures (Richelle et al., 2020). In

the mechanistic, mathematical modeling system functions and properties are

described as the result of the interaction of the system elements within the cell

and with the environment. Thus, mechanistic models can predict behavior of

cellular systems or (metabolic) processes when elements of the model, their

properties or interactions change (Stalidzans et al., 2020). Different mechanistic

modeling approaches have been extensively utilized for the description and

interpretation of cell culture metabolomics results with several methods and

related freely available tools and some examples of their application listed in

Table 12.6.

Changes in the flow through metabolic networks are a reflection of genetic,

epigenetic and environmental factors. Measurement and the analysis of the net-

work can be done through the analysis of the flow of a label from isotopically

labeled precursors into metabolites (see above). Metabolic flux and concentration

do not necessarily correlate as metabolic concentration increase can come from

either increased production flux or decreased consumption flux. Thus, metabolite

levels and fluxes provide complementary information. Fluxes can not be directly

measured, but can be inferred from measurement of isotope tracers (Jang et al.,

2018) with some examples of metabolic flux experiments described above. In

addition to MS application for flux analysis, NMR spectroscopy can be used for a

highly sensitive site-specific label quantification. In cell culture applications iso-

topic label tracing with NMR can be used for analysis of extracellular, intracellu-

lar or organel specific flow. Time-series measurements of metabolome are

essential for the development and validation of dynamic models of metabolism

(Judge et al., 2019; Sefer et al., 2016). In a typical cell culture metabolomics set-

ting described above, information about the dynamic metabolome change would

require significant resources, and sample material. Time-series sampling has to

provide sufficient number of replicates, ensure sufficient experiment duration, and

the time resolution. Sampling introduces extraction biases and the confounding of

biological and analytical variance (Sitnikov et al., 2016; Tabatabaei Anaraki

et al., 2018).

Different types of metabolic modeling have been presented for number of sig-

nificant cell lines including for example for a model of a generic human cell

(Brunk et al., 2018; Robinson et al., 2020) as well as number of specific cell

types, including HEK293 cells (Quek et al., 2014), CHO cells (Lund et al., 2017;
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Robinson et al., 2020), iPSCs (Chandrasekaran et al., 2017; Shen et al., 2019),

cancer cell lines (Ghaffari et al., 2015; Yizhak et al., 2015). Development of large

combined models that can take advantage of advanced knowledge of some path-

ways and ability to simulate large networks continues to be an active area of

research (Hameri et al., 2019; Jamshidi & Palsson, 2010; Opdam et al., 2017).

Extreme high-throughput metabolomics and lipidomics of cell cultures, with an

increasing coverage over time or flux provides information for parameter optimi-

zation. At the same time this data can be used for the development of data-driven,

machine learning models and hybrid mechanistic-machine learning models with

major potential in the design of optimal cells and cell environments.

Table 12.6 Freeware methodologies for mechanistic modeling.

Method Software application
Examples of some application
in cell culture metabolomics

Bayesian modeling GRASP Methionine cycle modeling using
approximate Bayesian
computation

Logical modeling CellNetOptimizer (http://
www.cellnopt.org) GINsim
(http://ginsim.org)

Combination of cell line
proteomics and metabolomics
data logic mechanistic model
modeling to explain
heterogeneous drug response in
cellular cholesterol regulation

Dynamic modeling
through Ordinary
differential equations

COPASI (Hoops et al.,
2006) CellDesigner
(Matsuoka et al., 2014) VCell

Many examples of COPASI’s use
in biotechnology cell modeling
are reviewed in; recent example
of hybrid cybernetic modeling
that combines dynamic modeling
between different metabolic
states for CHO cells

Stochastic modeling COPASI (Hoops et al.,
2006) StochKit MaBoSS
(http://maboss.curie.fr)

Theoretical foundation to study
metabolism in conjunction with
stochastic enzyme expression
has been presented showing
metabolic heterogeneity resulting
from enzyme level stochasticity

Stoichiometric
modeling

COBRA (Heirendt et al.,
2019) CobraPy Raven 2.0
(Wang et al., 2018) Merlin

Genome-scale stoichiometric
reconstructions and
computational models of
mammalian metabolism
particularly for CHO cells coupled
to protein secretion

Agent based
modeling

ARCADE Extensive review of agent based
methods for cancer cell modeling

Several freeware methodologies for mechanistic modeling.
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Machine learning and hybrid models and artificial
intelligence for cell design
Current mechanistic models, although increasingly detailed, still can not provide

complete simulation and explanation of cellular processes possibly due to the

self-regulatory nature of metabolic networks, posttranslational regulation and the

topological organization of metabolism (Zampieri et al., 2019; Zelezniak et al.,

2018) all making relationship between enzyme function and metabolites highly

dynamic and multifactorial and therefore suboptimaly covered with current mech-

anistic models.

In the development of safe, specific, and affordable gene and cell therapies

the ability to design appropriate modalities with predictable behavior in different

environments is of particular importance. Machine learning has been extensively

used for the analysis of high throughput omics data as well as images of cell cul-

tures with some examples presented above. AI systems that can describe and pre-

dict behavior of biological networks of cells will allow more accurate, faster and

less expensive innovations in life sciences while at the same time ensuring

predictable outcomes. In particular, the full potential for safe and efficient utiliza-

tion of gene editing and live cell therapies requires an ability for controlled design

of these modalities with simulations that allow testing and optimization under dif-

ferent conditions in both production and utilization. However, the current inability

to predict the behavior of biological systems including predicting the phenotype

from genotype and the inability to extrapolate large-scale or in vivo outcomes

from small-scale, ex vivo experiments severely hampers progress of cell therapy

development. The lack of sufficient quantity and quality of data hampers the

direct use of machine learning for the development of predictive models of cellu-

lar systems. Simultaneously, the lack of biological knowledge as well as the

extreme complexity of the system makes development of whole cell system

mechanistic models impossible at this point.

Machine learning are algorithms that perform pattern formation and classifica-

tion and establish rules and statistical structures from data without any explicit

instructions. Machine learning is widely used in the analysis of cell culture data

including analysis of “omics” data as well as metabolomics and lipidomics

(Cuperlovic-Culf, 2018; Pomyen et al., 2020). In cell culture applications there is

an increasing abundance of data, both metabolomics/lipidomics as well as other

types of omics and data for gene knock-out screens of protein inhibition and this

resources can be now used to develop data-driven models without any mechanis-

tic assumptions or inclusion of only very well defined theoretical knowledge.

Several recent examples show the power of these approaches when linked to cell

culture metabolomics (Zelezniak et al., 2018). Zelezniak et al. (2018) have used

machine learning modeling of proteomics data to predict metabolite concentra-

tions. The predicted concentrations correlated strongly with measured metabolo-

mics data in yeast cell analysis. Different data transformation techniques and a
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large number of different machine learning algorithms were tested and the quality

of obtained models was ranked based on the correlation with the measured metab-

olite concentrations. This analysis has shown that machine learning approaches

can provide some information about multifactorial relationships in metabolic net-

works without information from mechanistic models. In another example,

Costello and Martin (2018) used longitudinal proteomics and metabolomics cell

culture data to develop machine learning predictive metabolism models. In this

approach authors used tree-based pipeline optimization tool to combine, through

genetic algorithms, 18 different feature selection algorithms and 11 different

machine learning regressors in order to find function f which satisfies:

argminΣΣ f ðmi½t�; pi½t�Þ2m
0iðtÞ

�
�

�
�

�
�

�
�
2

where mi½t� and pi ½t� are, respectively,

metabolite and protein concentrations at time t. Metabolome and proteomics con-

centration measurements over time were the input variables into the machine

learning model and m
0i ðtÞ is metabolite time derivative (rate of change) is the

output of the model.

Machine learning generally performs poorly in prognosis particularly when

trained using sparse data. However, these methods can be combined with mecha-

nistic models in order to provide a combination of knowledge-based and data-

driven systems for modeling and design. Examples of metabolomics applications

that were combining constraint-based metabolism modeling analysis and machine

learning have been recently outlined (Zampieri et al., 2019). Method comparison

has shown the possibility to link results from mechanistic models with further

analysis with machine learning. Machine learning can also be enhanced with the

integration of knowledge in the form of driving equations, constraints or boundary

conditions in order to reduce the model search space improving handling of

sparse, noisy data. Mechanistic models can benefit from machine learning in cre-

ating surrogate models, identify networks, system dynamics and parameters from

data (Cuperlovic-Culf, 2018; Peng et al., 2020). Metabolomics and lipidomics

investigation of cell culture in different applications provides uniquely rich data

for creation of better cell models and AI tools for design of cell environment for

optimal utilization as well as design of cells with optimal behavior. Cell culture

metabolomics also provides a possibility for measurement of metabolite concen-

trations in whole cells, organelles, extracellular vesicles and media in static or

flux mode. All this data can be combined in order to develop predictive cellular

models that can be further linked with other information about the cells including

other omics measurements or image analysis data and finally implemented in the

cell design systems.

Large datasets primarily resulting from single-cell RNASeq analysis are driv-

ing development of a number of new AI methods for prediction and modeling of

biological data and many of these approaches can be adapted to metabolomics

and metabolism modeling in cell culture analysis. Recently published scGen

(Lotfollahi et al., 2019) method combines variational autoencoders (consisting of

an encoder and a decoder and able to generate new data points) and latent space

vector arithmetics for modeling cell behavior from single cell gene expression
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data. In another example Graph Convolutional Neural networks for Genes were

developed for inferring gene-gene interactions from high throughput spatial gene

expression data (Yuan & Bar-Joseph, 2020). This method, through its use of

graph structure, can utilize both the gene expression values (in the original use or

metabolite concentration in metabolomics) encoded in each node and relationship

between cells expressing these genes or metabolites in order to predict extracellu-

lar interactions. Modeling methods used in cell culture design have to provide

information about the functional outcome as well as mechanisms leading to the

outcomes in order to aid in drug or gene editing making “black box” deep learn-

ing models in-appropriate for this application. Use of a “visible” neural network

was attempted as a method for an interpretable NN for simulation of a basic

eukaryotic cell (Ma et al., 2018). The resulting simulation DCell (http://d-cell.

ucsd.edu/) provides an excellent simulation of cell growth and allows in silico

investigation of the molecular mechanisms underlying genotype to phenotype

relationship.

Theory inspired machine learning methods seek casualties by integrating prior

knowledge and data. Wide range of information available for cell cultures as well

as mechanistic models for a number of pathways as well as genome scale net-

works can be used to narrow the search space for machine learning models. At

the same time, machine learning can be used to reduce the number of dynamic

variables and unknown parameters present in mechanistic models while providing

uncertainty quantification. Extensive consideration of the power and opportunities

of theory inspired machine learning is provided in Alber et al. (2019). Some

examples of biological knowledge inspired machine learning models include

knowledge-primed neural networks (KPNN) (Fortelny & Bock, 2020) and

simulation-based kernel ML (SimKernML) (Deist et al., 2019). In the KPNN

method, a biological network is used to define a graph where each node corre-

sponds to a protein or a gene, and each edge corresponds to a regulatory relation-

ship obtained from biological databases or literature. Network that is designed in

this way can be trained, that is optimized, with a much smaller dataset then is

needed for example for artificial neural networks as fewer free parameters need to

be optimized. Additionally, every node and every edge within a KPNN have a

corresponding biological interpretation. SimKernML uses mechanistic simulations

of biological processes to build machine learning kernel (e.g., support vector

machine) and this improves the downstream machine learning performance for

small training dataset.

Novel, faster and more accurate theory inspired and “white box” metabolism

modeling methods, developed and trained using metabolomics and lipidomics

measurements in cell cultures can be utilized for the design of cell growth con-

ditions, explanation of different cell culture test results or design of

predictable and safe cell therapies. Addition of novel methods for single cell

metabolomics, in-cell analysis, 3D cell cultures and increased metabolite cover-

age will provide invaluable data for further development of improved applica-

tions of cell cultures.
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Araùjo, M., Hube, L. A., & Stasyk, T. (2008). Isolation of endocitic organelles by density

gradient centrifugation. 2D PAGE: Sample Preparation and Fractionation, 317�331.

Bachurski, D., Schuldner, M., Nguyen, P.-H., Malz, A., Reiners, K. S., Grenzi, P. C.,

Babatz, F., Schauss, A. C., Hansen, H. P., & Hallek, M. (2019). Extracellular vesicle

measurements with nanoparticle tracking analysis�An accuracy and repeatability com-

parison between NanoSight NS300 and ZetaView. Journal of Extracellular Vesicles, 8

(1), 1596016.

Basu, S., Duren, W., Evans, C. R., Burant, C. F., Michailidis, G., & Karnovsky, A. (2017).

Sparse network modeling and metscape-based visualization methods for the analysis of

large-scale metabolomics data. Bioinformatics (Oxford, England), 33(10), 1545�1553.

Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., &

Nicholson, J. K. (2007). Metabolic profiling, metabolomic and metabonomic proce-

dures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature

Protocols, 2(11), 2692�2703.

Belle, J. L., Harris, N., Williams, S., & Bhakoo, K. (2002). A comparison of cell and tissue

extraction techniques using high-resolution 1H-NMR spectroscopy. NMR in

Biomedicine: An International Journal Devoted to the Development and Application of

Magnetic Resonance in Vivo, 15(1), 37�44.

447References

http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref1
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref1
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref1
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref1
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref2
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref2
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref2
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref3
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref3
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref3
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref3
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref3
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref4
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref4
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref4
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref4
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref5
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref5
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref5
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref5
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref5
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref6
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref6
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref6
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref6
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref6
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref7
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref7
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref7
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref8
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref8
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref8
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref8
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref9
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref9
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref9
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref10
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref10
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref10
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref10
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref10
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref10
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref11
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref11
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref11
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref11
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref12
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref12
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref12
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref12
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref12
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref13
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref13
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref13
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref13
http://refhub.elsevier.com/B978-0-323-85062-9.00012-X/sbref13


Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purifica-

tion. Canadian Journal of Biochemistry and Physiology, 37(8), 911�917.

Bonin, F., Ryan, S. D., Migahed, L., Mo, F., Lallier, J., Franks, D. J., Arai, H., & Bennett,

S. A. (2004). Anti-apoptotic actions of the platelet-activating factor acetylhydrolase I

α2 catalytic subunit. Journal of Biological Chemistry, 279(50), 52425�52436.

Broido, A. D., & Clauset, A. (2019). Scale-free networks are rare. Nature Communications,

10(1), 1�10.

Brunk, E., Sahoo, S., Zielinski, D. C., Altunkaya, A., Dräger, A., Mih, N., Gatto, F.,

Nilsson, A., Gonzalez, G. A. P., & Aurich, M. K. (2018). Recon3D enables a three-

dimensional view of gene variation in human metabolism. Nature Biotechnology, 36

(3), 272.

Byeon, S. K., Lee, J. Y., & Moon, M. H. (2012). Optimized extraction of phospholipids

and lysophospholipids for nanoflow liquid chromatography-electrospray ionization-tan-

dem mass spectrometry. Analyst, 137(2), 451�458.

Cajka, T., & Fiehn, O. (2016). Toward merging untargeted and targeted methods in mass

spectrometry-based metabolomics and lipidomics. Analytical Chemistry, 88(1),

524�545.

Camacho, D., De La Fuente, A., & Mendes, P. (2005). The origin of correlations in meta-

bolomics data. Metabolomics: Official Journal of the Metabolomic Society, 1(1),

53�63.

Campos, A. I., & Zampieri, M. (2019). Metabolomics-driven exploration of the chemical

drug space to predict combination antimicrobial therapies. Molecular Cell, 74(6),

1291�1303.

Chandrasekaran, S., Zhang, J., Sun, Z., Zhang, L., Ross, C. A., Huang, Y.-C., Asara, J. M.,

Li, H., Daley, G. Q., & Collins, J. J. (2017). Comprehensive mapping of pluripotent

stem cell metabolism using dynamic genome-scale network modeling. Cell Reports, 21

(10), 2965�2977.

Costello, Z., & Martin, H. G. (2018). A machine learning approach to predict metabolic

pathway dynamics from time-series multiomics data. NPJ Systems Biology and

Applications, 4(1), 1�14.

Cottret, L., Frainay, C., Chazalviel, M., Cabanettes, F., Gloaguen, Y., Camenen, E., Merlet, B.,

Heux, S., Portais, J.-C., & Poupin, N. (2018). MetExplore: Collaborative edition and

exploration of metabolic networks. Nucleic Acids Research, 46(W1), W495�W502.

Covert, M. W. (2017). Fundamentals of systems biology: From synthetic circuits to whole-

cell models. CRC Press.

Cuperlovic-Culf, M. (2018). Machine learning methods for analysis of metabolic data and

metabolic pathway modeling. Metabolites, 8(1), 4.
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