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Chapter 18

Machine Learning and Hybrid Methods for Metabolic
Pathway Modeling

Miroslava Cuperlovic-Culf, Thao Nguyen-Tran, and Steffany A. L. Bennett

Abstract

Computational cell metabolism models seek to provide metabolic explanations of cell behavior under
different conditions or following genetic alterations, help in the optimization of in vitro cell growth
environments, or predict cellular behavior in vivo and in vitro. In the extremes, mechanistic models can
include highly detailed descriptions of a small number of metabolic reactions or an approximate represen-
tation of an entire metabolic network. To date, all mechanistic models have required details of individual
metabolic reactions, either kinetic parameters or metabolic flux, as well as information about extracellular
and intracellular metabolite concentrations. Despite the extensive efforts and the increasing availability of
high-quality data, required in vivo data are not available for the majority of known metabolic reactions;
thus, mechanistic models are based primarily on ex vivo kinetic measurements and limited flux information.
Machine learning approaches provide an alternative for derivation of functional dependencies from existing
data. The increasing availability of metabolomic and lipidomic data, with growing feature coverage as well as
sample set size, is expected to provide new data options needed for derivation of machine learning models of
cell metabolic processes. Moreover, machine learning analysis of longitudinal data can lead to predictive
models of cell behaviors over time. Conversely, machine learning models trained on steady-state data can
provide descriptive models for the comparison of metabolic states in different environments or disease
conditions. Additionally, inclusion of metabolic network knowledge in these analyses can further help in the
development of models with limited data.
This chapter will explore the application of machine learning to the modeling of cell metabolism. We first

provide a theoretical explanation of several machine learning and hybrid mechanistic machine learning
methods currently being explored to model metabolism. Next, we introduce several avenues for improving
these models with machine learning. Finally, we provide protocols for specific examples of the utilization of
machine learning in the development of predictive cell metabolism models using metabolomic data. We
describe data preprocessing, approaches for training of machine learning models for both descriptive and
predictive models, and the utilization of these models in synthetic and systems biology. Detailed protocols
provide a list of software tools and libraries used for these applications, step-by-step modeling protocols,
troubleshooting, as well as an overview of existing limitations to these approaches.
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Machine learning
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1 Introduction

Whether for production of biologics or bioremediation in meta-
bolic engineering, understanding different metabolic states under
physiological and disease conditions to identify new therapeutic
targets or for predictive modeling of cell behavior in a changing
environment, computer modeling of cell metabolism provides an in
silico platform to test optimal culture conditions, intervention, or
impact of target engagement. Such models have been used to
advantage in multiple biopharmaceutical applications [ ], drug
target identifications [ ], toxicogenomics including comparison
of animal and human cell response [ ], and, as detailed, kinetic
models of simple cell systems, including red blood cells (erythro-
cytes) [ ] and platelets [ ]. These models can be further expanded
into major biotechnology platforms designed to optimize the engi-
neering of CHO cells for biologics [ ] and HEK293 cells for
vaccine particle production [ ] and characterize the metabolic
changes that influence pluripotency and stem cell fate [ ].8
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Classical, mechanistic, cell metabolism models, generally, are
either dynamic models that include detailed kinetic information for
a limited number of reactions or steady-state, constrained models
that simulate stationary behavior of a larger cellular, tissue, or
organismal system [9]. These models are built based on biological
knowledge and only for known metabolic reactions where subsets
of reaction or flux parameters are optimized using data to fit specific
conditions. Kinetic models allow dynamic simulation of the change
in the system over time; constrained models assume the system is in
steady-state, thus, only allowing simulation of the flux through
reactions with the assumption of constant metabolite concentra-
tions on the simulation timescale. When choosing between these
extremes, the modeler is faced with a trade-off between the size of
the model and the level of detail provided by the predicted
solutions.

Different combinations of methods have been proposed to
model metabolism including efforts to develop a genome-scale
kinetic model combining large network coverage with detailed
reaction and metabolite concentration analysis (reviewed in
[10, 11]). Bringing together different types of mechanistic models,
however, attempts to alleviate the deficits of constraint-based mod-
els given their lack of information about dynamic metabolite con-
centration and enzyme regulation while optimizing the kinetic
framework to reduce shortcomings associated with nonlinearity,
parameter identifiability, and uncertainty. Although these com-
bined approaches can bring metabolism modeling closer to the
optimal large scale, they fully depend on a priori biological knowl-
edge. Moreover, the reality is that they will encompass multiple
unknown parameters that require optimization or testing for



outcome across many combinations and large ranges of values.
Such hybrid models are, by their very nature, both computationally
demanding and data-intensive. The application of machine learning
(ML) methods to these models can address some of these issues.
ML enables various types of data to be used simultaneously as well
as provide more appropriate data-driven approaches that can pro-
vide more efficient parameter searches and more accurate, unbiased
data-driven modeling. Thus, ML can both contribute to specific
steps in the mechanistic model development, as outlined in Fig. 1,
and present new global approaches for the expansion of hybrid
methods combining both constrained and kinetic modeling
described below.
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Fig. 1 Examples of possible contributions of ML in different steps of mechanistic model development. Although
ML can be used for building of the complete model or for combination of model and experimental data, it can
also help in determination of parameters and optimization of specific steps in development and utilization of
mechanistic models. NLP natural language processing, ODE ordinary differential equations

ML combines sets of algorithms that develop predictive models
through experience, i.e., through learning and functional generali-
zation from data. ML models can be developed only from the data
and do not require any prior knowledge; however, they also benefit
from inclusion of domain knowledge that can optimize ML meth-
odology for specific applications. In this way, prior knowledge can
reduce training data needs. ML methods can also contribute to
individual steps in the development of a mechanistic model (Fig. 1
shows some possible applications). In this context, ML is not used
in modeling but helps to gather information, optimize parameters,
or provide better solvers for differential equations [12]. Alterna-
tively, ML can be further integrated into mechanistic models to



provide analysis of the results or include theoretical information for
development of knowledge-inspired metabolic ML models. There-
fore, combined ML/mechanistic methods into “hybrid” cell
metabolism models can augment the mechanistic knowledge
about metabolism and the kinetics of metabolic reactions with
data-driven methods for describing unknown parts of the system
or for describing, more effectively, the underlying complexity of the
system. These hybrid models are a very recent innovation, with
great potential to provide new insight in metabolism and its influ-
ence on organism and cellular fate.
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1.1 From

Mechanistic to ML

Models, There, and

Back Again

The first hybrid model in systems biology was presented in 2010
[13], yet this potentially transformative approach remains in its
infancy due to the complexity of the problem and the lack of
appropriate data for most applications. In the most general case,
mathematical modeling attempts to combine both internal and
external metabolic reactions and interactions with ultimate goal to
provide simulation of the complete metabolic network in all its
detail, including complete metabolic pathways and individual reac-
tions as well as activation and inhibition with formal, numerical
representation providing as high level of accuracy and detail as
achievable within our current level of information. For well-
described systems and reactions, it is possible to develop highly
accurate, mechanistic models, presenting detailed dynamic reaction
information and providing the change in metabolism over time via
differential equations allowing inclusion of the effects of inhibitors
or activators of enzyme functions. The increasing availability of
longitudinal omics data will allow optimization of kinetic para-
meters in these models. However, for the majority of reactions,
this level of information is not available, and modeling is only
possible using approximations of kinetic process simulation (e.g.,
Michaelis-Menten equation) or by reducing studies by assuming
steady state and constraining potential responses, thereby making it
possible to model a larger number of reactions. Hybrid models
employing ML have been fueled by the increasing availability of
large amounts of biomolecular data. ML models increase calcula-
tion speed, but, even more importantly, ML can assist in creating
models for systems for which there is limited knowledge via a data-
driven approach. MLmethods can furthermore be used to combine
data from different sources including multiomic data, enhance
mechanistic models by providing additional in silico data, and
optimize methods for parameter determination. ML methods can
help in building and executing simulations to test outcome.

Kinetic models of metabolism integrate enzyme regulation and
multiomic data with reaction network information to provide
dynamic analyses and predictions of metabolite concentrations.
These models present mechanistic representation of the processes
in cells defined as a series of ordinary differential equations (ODEs)



and include details of rate expression and kinetic parameters to
estimate dynamic behavior of each reaction in the model. The
mathematical form of the model is shown in Eq. 1:
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dci
dt

¼ S∙V E,C , kð Þ; i ¼ 1, 2 . . .n ð1Þ

where ci is the concentration of metabolite i, S is the stoichiometric
matrix, and V is the vector representation of reaction flux that
depends on E (the enzyme abundance), C (metabolite concentra-
tions), and k (kinetic parameters for the reaction). Equations are
written for each metabolite in the system, requiring knowledge of
appropriate parameters for each and every reaction. The sets of
ODEs are then solved often using various approximation methods,
including as two examples Michaelis-Menten or Hill kinetic equa-
tions [14]. As a result, the majority of kinetic models focus on a
small subset of reactions within specific pathways. Kinetic models
have been developed for a number of metabolic pathways in differ-
ent organisms and are made available through dedicated reposi-
tories (listed in Table 1). While useful and effective, the possibility
to develop large, genome-scale kinetic models remains challenging
given issues of kinetic model nonlinearity, computational tractabil-
ity, parameter identifiability, estimability, and uncertainty [10].

While kinetic information is available for a number of enzymes
in several detailed databases [15, 16] (reviewed in Table 1), the
majority of kinetic constants have been measured ex vivo. Without
empirical validation, it is possible that they inadequately represent
the in vivo situation. More accurate determination of kinetic para-
meters requires optimization from data; however, models generally
have problems in identifying and optimizing large numbers of
parameters given nonlinear mechanistic rate equations. Simplified
kinetic models have been explored for different applications by
either reducing the size of the pathway space or simplifying kinetic
equations. Such approaches require optimization of these approxi-
mate parameters for each case. Improvements in the optimization
and fitting of models to data have been proposed with methods
such as approximate Bayesian computation (ABC) [17] presented
as a way to improve fitting strategy by sampling values from an
approximation of the posterior distribution while not calculating
explicitly the likelihood function.

The alternative to kinetic models, constraint-based modeling,
lacks the representation of metabolite concentration and enzyme
regulation afforded by kinetic models. Instead, these so-called
genome-scale metabolic models (GEMs) combine gene sequence
information with omics data to provide a map of intracellular
metabolism for an organism through calculation of the stoichio-
metric matrix. GEMs have been used for a number of different
applications, for example, flux balance analysis (FBA) [18] or met-
abolic balance analysis (MBA) [19] as well as testing of synthetic



Table 1
Examples of resources available for model development, ML examples, as well as metabolic models

Metabolism model
development

Software application Examples of applications in cell culture
metabolomics

Bayesian modeling GRASP [17] Methionine cycle modeling using
approximate Bayesian computation [17]

Logical modeling CellNetOptimizer (http://
www.cellnopt.org)

GINsim (http://ginsim.org)

Combination of cell line proteomics and
metabolomics data logic mechanistic l
modeling to explain heterogeneous drug
response in cellular cholesterol regulation
[62]

Dynamic modeling
through ordinary
differential equations

COPASI [63]
CellDesigner [64]
VCell [65]

Many examples of COPASI’s use in
biotechnology cell modeling are reviewed
in [66] recent example of hybrid
cybernetic modeling that combines
dynamic modeling between different
metabolic states for CHO cells [67]

Stochastic modeling COPASI [63]
StochKit [68]
MaBoSS (http://maboss.
curie.fr)

Theoretical foundation to study metabolism
in conjunction with stochastic enzyme
expression has been presented showing
metabolic heterogeneity resulting from
enzyme-level stochasticity [69]

Stoichiometric modeling COBRA [57]
CobraPy [57, 70]
Raven 2.0 [58]
Merlin [71]

Genome-scale stoichiometric
reconstructions and computational
models of mammalian metabolism
particularly for CHO cells coupled to
protein secretion [72]

Agent-based modeling ARCADE [73] Extensive review of agent-based methods for
cancer cell modeling [37]

ML tools Software application Examples of some application in cell
culture metabolomics

Longitudinal GPR
(LonGP)

https://github.com/
chengl7/LonGP [40]

Additive GPR method for non-parametric
analysis of longitudinal data

LSTM used in
metabolism modeling

https://github.com/youlab/
pattern_prediction_NN_
Shangying [37]

LSTM for improvement of parameter
modeling based on mechanistic models

Metabolism model
database

Software application Type of resource

BioModels https://www.ebi.ac.uk/
biomodels [74]

Model repository

SABIO-RK http://sabio.h-its.org/
[75]

Kinetic information

BRENDA https://www.brenda-
enzymes.org/ [16]

Kinetic information

eQuilibrator https://equilibrator.
weizmann.ac.il/ [76]

Database of biochemical equilibrium
constants and Gibbs free energies

http://www.cellnopt.org
http://www.cellnopt.org
http://ginsim.org
http://maboss.curie.fr
http://maboss.curie.fr
https://github.com/chengl7/LonGP
https://github.com/chengl7/LonGP
https://github.com/youlab/pattern_prediction_NN_Shangying
https://github.com/youlab/pattern_prediction_NN_Shangying
https://github.com/youlab/pattern_prediction_NN_Shangying
https://www.ebi.ac.uk/biomodels/
https://www.ebi.ac.uk/biomodels/
http://sabio.h-its.org/
https://www.brenda-enzymes.org/
https://www.brenda-enzymes.org/
https://equilibrator.weizmann.ac.il/
https://equilibrator.weizmann.ac.il/
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lethality of genes [20] and determination of off-target drug effects
[21]. GEMs are built on a network connection of all metabolic
reactions that are known to occur in an organism combining meta-
bolites, genes, and protein information to inform observed changes
in metabolite concentrations across conditions.

The potential to determine andwork from the entiremetabolic
reaction network derived directly from genome information opens
an opportunity for building complete metabolic maps for any
organism as well as subsets of metabolic networks for different
biological systems. GEMs can simulate flux for all known metabo-
lites. Additionally, they can provide a platform for multiomic anal-
ysis as well as a system for an evaluation of the complete
metabolome space with sparse metabolomic profiling data. How-
ever, their reaction maps are often underdetermined, with more
reactions thanmetabolites; thus, they generatemany possible solu-
tions often too complex for the majority of applications [1]. A
number of approaches to address this issue and simplify these
models for specific applications include the utilization of transcrip-
tomic, proteomic, and metabolomic data to remove unlikely reac-
tions as well as the addition of biological, physical, or chemical
constraints [22–24]. Gene expression data is commonly used to
extract the subset of reactions that are active in a specific situation
and silence reactions catalyzed by enzymes that are not expressed.
Although this approach is efficient, it makes a very serious assump-
tion that gene expression activitymeasured at a given time point in a
mixture of cells is linked to gene-protein-reactionnetwork at steady
state. This assumption is an oversimplification of the highly com-
plex relationship between proteins, metabolite fluxes, and gene
expression. As an example, the most complete GEM for metabo-
lism of human cells – Recon3D – provides a network of 10,600
reactions linking 5835metabolites and 2248 genes [25]. Recon3D
provides a very good coverageof hydrophilicmetabolites; however,
while it includes a number of lipid pathways, its coverage of the
lipidome is essentially incomplete, making it difficult to extend
beyond metabolomics.

The lack of network solutions for lipidomic data makes lipido-
mics highly amendable to data-driven modeling. Development of
mechanistic lipid metabolism kinetic models or a complete repre-
sentation of lipid processes via GEMs remains highly challenging
due to the diversity of lipid functions and their enzymes. As classi-
fied by the LIPID MAPS consortium [26], lipids are divided into
eight categories and further subdivided into multiple classes, sub-
classes, divisions, and molecular species each with specific roles and
synthesized or remodeled by overlapping enzymatic pathways. Cur-
rent estimate of the number of lipid species in biological life ranges
from 9000 to 100,000 [27]. This diversity in lipid structures and
functions makes the mapping of all interconnections of lipids
impossible as of today. In addition, the enzymes which regulate



lipids are promiscuous, catalyzing several different reactions with
different specificities for the hydrocarbon chains that define lipid
identities [28]. Without detailed substrate affinities, it is difficult to
predict which lipids at the molecular level will be impacted by a
change in condition or state. As a further challenge to all metabo-
lomic modeling, cellular reactions are compartmentalized, with
enzymes localizing to specific organelles within cells and to specific
tissues within an organism. Thus, modeling must consider not only
lipid abundances and enzymatic function but also their transport
and, ideally, their subcellular concentrations. As an example, acid
ceramidase encoded by ASAH1 localizes to the lysosome and cat-
alyzes the hydrolysis of ceramides to their constituent sphingoid
base and free fatty acid at pH¼ 4.5. If the enzyme is mislocalized or
lysosomal pH is alkalinized, then acid ceramidase catalyzes the
reverse reaction, increasing the abundance of ceramides from a
sphingoid base and a free fatty acid [29, 30]. Under physiological
conditions, acid ceramidase displays substrate preference for cera-
mides and free fatty acids with unsaturated N-acyl hydrocarbon
chains of 6–16 carbons [29].

ML methods can be viewed as a combination of algorithms that
learn and generalize functional dependencies from experiences,
data, to identify high-order correlations and then generate predic-
tions from data. At the most basic level, ML methods can be
divided into two approaches: unsupervised and supervised. Unsu-
pervised methods aim to determine variation, correlations, groups,
or functional dependencies among samples without any input of
sample labels from an external “supervisor” [31]. Supervised meth-
ods on the other hand rely on the inputted sample labels and try to
develop models that predict targets and underlay the supervised
group classification. Regression analysis is part of supervised ML,
where algorithms are trained with input and output features to
provide predictive modeling for continuous outcome (e.g., metab-
olite concentration over time) based on the value of one or more
predictor, input value, system parameter, or condition
characteristic.

Specific roles of ML in combination with mechanistic metabo-
lism modeling are:
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1.2 Improving Cell

Metabolism Modeling

with ML

1. Integration of in silico mechanistic modeling results with other
omics data.

2. Determination of parameters for mechanistic models from
data- or theory-driven ML.

We review example methods that have been applied with suc-
cess below and then provide specific methodology protocols.
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1.2.1 Integration of in

Silico Mechanistic

Modeling Results with

Other Omics Data

To achieve integration, the user must first develop and optimize a
mechanistic model and then use the data obtained from this model
for ML analysis of the system. ML system exploration can use the
results of the simulation or combine simulation outputs with other
relevant data about the system under investigation. As a proof of
principle, a combination of ML and multiomics data were used to
effectively predict pathway dynamics in [32, 33]. In this approach,
metabolism models can be done at any scale from whole network
GEM models to very small models including successful recapitula-
tion of lipid metabolism (reviewed in [34]). Here, ML is subse-
quently used as a tool for data mining rather than modeling. A
small number of examples, combining GEM and ML methods,
have shown potential for utilization of both supervised and unsu-
pervised ML for this type of application. As an example, when used
for analysis of the effect of inhibitors on metabolism, GEMs can
provide simulation of flux differences following disruption of a
specific metabolic step. In this approach, ML can be used to deter-
mine major changes across the network between control and in
silico “treated” cases. Shaked et al. [35] have used support vector
machine (SVM) and random forest (RF)MLmethods to determine
major metabolic alterations from simulated flux data obtained
using flux variability analysis (FVA) following inhibitory drug sim-
ulation through gene deletion analysis. In this way, ML was used to
determine drug side effects on the metabolic network [35]. In
another very significant application, GEM and ML models were
combined during learning tasks by embedding stoichiometric con-
straints in the ML model training process [36]. In this approach,
dynamic elementary mode regression discriminant analysis was
developed to identify the most discriminant pathway activation
patterns between different conditions [36].

1.2.2 Determination of

Parameters for Mechanistic

Models from Data- or

Theory-Driven ML

Mechanistic models require optimization of parameters from data
where, in the majority of cases, models cannot be solved analyti-
cally; thus, parameter optimization requires numerical methods.
These methods are often slow and, for a large number of para-
meters with exponentially increasing number of combinations,
unable to perform large-scale explorations of the complete param-
eter space. Yet the complete parameter space must be interrogated
in order to determine global, optimal parameter or input choices.
Long short-term memory (LSTM) deep learning-based network
analysis method has shown promising results for the acceleration of
this parameter optimization with high accuracy [37]. LSTM was
introduced as a way to resolve problems of exploding/vanishing
gradients that recurrent or very deep neural networks face when
trying to learn long-term dependencies [38]. LSTM has been
developed for processing continuous series of data [39] including
time course sequences (as is usually the case in mechanistic models)
or series of outcomes for combinations of input parameters
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(as needed for optimization of model routine). The strength of
these deep learning methods lies in the capacity to establish a map
of outcomes from the training data. In the LSTM application, a
small subset of data generated using mechanistic models is used to
train neural network that then provides faster coverage of the
parameter space to determine optimal combination for a given
system.

A very detailed outline of LSTM methodology with examples
of LSTM architecture used for metabolism modeling is provided in
[37, 38]. In this arrangement, the cell remembers, i.e., holds,
values over some time or point intervals, and the gates control
and regulate the flow of information into the cell. LSTM is ulti-
mately built from a set of recurrently connected subnetworks where
each block maintains its state and regulates information flow
through its nonlinear gating units. In the applications reviewed in
[37, 38], LSTM is used to determine mechanistic model input
parameters as it was able to search through a larger space of param-
eter options with a relatively small training set of random para-
meters and mechanistic model predicted molecular outputs. LSTM
networks were shown to provide reliable and, most importantly,
novel patterns of parameters suggesting that they are not limited to
passive repetition of the training information but provide real
mapping between input and output parameters. In this approach,
neural network model building focuses on an empirical mapping of
combinations of input parameters to system outputs of interest and
provides a much faster way to search input parameter space while, at
the same time, providing very accurate models for output para-
meters. For exploration, Vanilla LSTM is readily available in Python
or MATLAB applications.

An alternative approach to training ML models with data and
mechanistic models is to use biological knowledge to develop more
appropriate ML models that can then be trained with smaller
datasets providing knowledge-constrained modeling. Gaussian
process regression (GPR) is a method of great interest in this type
of application. In GPR, analysis and modeling of time-series data
and the determination of parameters and models can be viewed as a
regression problem where the goal of inference is to determine the
putative form of the time-dependent function and to obtain the
probability distribution of the dependent value on the variable. In
the sense of metabolism modeling, regression problems would take
the form of c1(t) ¼ f(c2(t)) + ε. This functional dependence deter-
mination can be viewed as a curve fitting that assumes that c1 is
ordered by c2, where c2 is a function of time. GPR models can
provide nonlinear system modeling, can be trained with smaller
datasets, and can automatically output values that include the vari-
ance and confidence interval of the model. In addition, prior
knowledge can be incorporated into the GPR model before train-
ing through optimization of covariance and kernel function. Here,
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Fig. 2 Brief outline of two approaches linking mechanistic and machine learning (ML) models for (a) using ML
for combined analysis of simulation results and omics data and (b) using ML for increased parameter space
search coverage in order to increase

kernels can be viewed as flexible nonlinear functions that can be
optimized and developed to define how quickly the regression
function will vary. A related example of utilization of GPR in
modeling of longitudinal processes was recently presented in [40].

Although many different ML approaches can be combined
with mechanistic modeling in a variety of ways and for a range of
applications, a number of similar procedural steps are required for
application of any ML method in either analysis of model-derived
data or augmentation of mechanistic models. Method section lists
procedures for utilization of LSTM and GPR in modeling with
similar protocols required for other ML model utilizations. The
Materials section below provides some software tools and links to
major metabolismmodeling databases. TheMethods section below
provides detailed protocols with Fig. 2 giving a schematic presen-
tation of these procedures.



Information about Web resources providing data, information, and
software for metabolic modeling that can support ML and hybrid
model development is presented in Table 1.

Development of a high-quality model relies upon (1) the intimate
knowledge of the system in question, (2) the articulation of appro-
priate hypotheses to test the models using experimental data, and
(3) a feedback workflow to inform the model for rebuilding and
validation. The experimental data used for modeling should be
obtained using robust, high-throughput, analytical techniques
that allow for rapid identification and reliable quantification of
metabolites. In this context, metabolomic and lipidomic datasets
are predominantly generated by mass spectrometry (MS)-based
and nuclear magnetic resonance (NMR) approaches. Brief outline
of methods is shown in Fig. 3.

MS offers a sensitive, quantitative, technical solution and includes
the possibility of devising and coupling experiments to produce
structural information of countless metabolites in a single acquisi-
tion. Considerations of data processing are as follows:
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2 Materials

3 Methods

3.1 Using

Mechanistic Models to

Produce Data for

Incorporation into ML

Classifiers

3.1.1 MS-Based

Lipidomic and

Metabolomic Data

Fig. 3 Schematic representation of NMR- and MS-based metabolomics and lipidomics analysis providing data
for model development. Included are major steps going from sample preparation, analytical methodologies,
assignment, and data preprocessing
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1. Untargeted MS analyses provide an unbiased approach to
simultaneously measure a large number of metabolites or lipids
within a sample without prior knowledge of lipid and metabo-
lite categories. Strengths are the broad coverage afforded by
the high-resolution mass analyzers used to discriminate lipids
based on mass to charge (m/z). Weaknesses lie in the complex-
ity of the matrices analyzed such that high abundance metabo-
lites are favored over low abundance ones despite multiple
front-end separation approaches (i.e., gas chromatography, liq-
uid chromatography, ion mobility, etc.). Quantification is done
in a semiquantitative manner. Without reducing matrix com-
plexity, the large quantity of metabolites and lipids results in
ion suppression due to co-elution, as well as in detector satura-
tion. These limitations are offset by the high-resolution mass
scanning of the precursor ion which enables identification
based on m/z. A comprehensive review of the technologies is
provided in [41, 42].

2. Targeted MS analyses focus on a predefined set of metabolites
and lipids by parking on a diagnostic ion using triple quadru-
pole or QTRAP mass analyzers wherein the third quadrupole
can be switched to trap fragmented ions for structural verifica-
tion (reviewed in [41, 42]). By coupling chromatography to
targeted MS methods, higher-resolution and more reliable
quantification of metabolites can be achieved. In addition to
derivatization by GC, a variety of LC methods such as normal
phase, reversed phase, and hydrophilic interaction LC, ion pair
chromatography is another strategy commonly employed in
metabolomic analysis for the separation of ionic metabolites
[41, 42]. The targeted metabolomic and lipidomic pipelines
generally utilize tandem mass spectrometry to obtain high
selectivity, enhanced sensitivity, and reliable quantification of
metabolic targets by reducing noise from isobaric species. As
such, targeted MS analyses aim to perform close to absolute
quantification. This is achieved by performing tandem MS
experiments such as multiple reaction monitoring (MRM,
with or without schedule) to restrict analysis to a predefined
set of metabolites or lipids. The data reduces complexity by
quantifying a single lipid or metabolite subclass at a time (aka
exploring 1000 in lieu of ~10,000 metabolites at a time).
Limitations are the number of analyses required to explore
the entire lipidome/metabolome. It is important to note that
data from both untargeted and targeted approaches comple-
ment metabolomic modeling approaches.

3. Post-acquisition data processing in both MS approaches
involves noise filtering and baseline correction, peak detec-
tion/selection, adduct annotation and deisotoping, peak align-
ment, and further deconvolution if necessary. Typically, in
untargeted MS analyses, due to the broad coverage of
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metabolites, the mass spectrum and chromatogram are
saturated with noise signals. The removal of these noise signals
involves establishing a set threshold and subtracting this
threshold from the measurement. Similarly, this type of analysis
likely will also contain detection of isotopic peaks of metabo-
lites, which need to be removed to simplify the final dataset.
For both untargeted and targeted MS analyses, specific para-
meters such as Gaussian smoothing, peak splitting, acceptable
peak width, and retention time windows must be established
for peak picking. This ensures consistency in data analysis and
avoids false-positive signals. Finally, peak alignment is an
important step in post-acquisition data processing to obtain
correct identity assignment for each MS signal. Peak alignment
and annotation are often performed by multiple peak features
dependent on the separation methodology employed. Several
alignment programs and algorithms have been developed for
this purpose [43–47].

4. For post-acquisition normalization, the MS signal
corresponding to each monitored metabolite or lipid, whether
obtained in untargeted or targeted approaches, is normalized
against an internal standard, critically of the same class as the
analyte and either expressed as pmol equivalents of this stan-
dard or placed back onto standard curve of a known, normal-
ized standard. Following this quantification from sample
extract, the normalized MS signals need to be expressed
according to the amount of starting biological material (e.g.,
liquid volume, cell number, tissue wet weight, etc.).

NMR can be used for nondestructive, continual, or in vivo mea-
surements in biofluids, tissues, and intact tissues and in solid,
semisolids, and gas phases, with variety of different experiments
and instrument profiles and measurements of multiple different
nuclei (e.g., 1H, 15N, 13C, 31P), separately or simultaneously. In
terms of metabolism modeling, NMR can provide longitudinal
measurement for a system by either continual sampling or in vivo
NMR measurement. Sample acquisition is limited with NMR
experiments monitoring between 50 and 200 metabolites of high
abundance (with concentrations greater than 1 μM). Briefly, steps
in data derivation using NMR are as follows:

3.1.2 NMR-Based Data

1. It is essential to select the appropriate experiment for the
system of interest – for fast, high-throughput, or continual
sample monitoring and quantification, preferred are 1D experi-
ments with water suppression (e.g., 1DNOESYor 1D CPMG)
that require minimal sample preprocessing (in the basic case
only involving addition of NMR reference material and pH
buffer), while 2D NMR provides possibility for analysis of
complex systems with unknown metabolites. Sample prepara-
tion for different applications is reviewed in great detail
elsewhere [48].
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2. Data processing from any NMR experiment involves signal
processing (apodization, Fourier transform, phasing) and nor-
malization (relative to NMR reference). Resulting spectrum
provides both peak positions (in ppm) that can be used for
assignment and peak intensities that are directly related to the
analytes’ concentrations. With addition of internal reference,
NMR can be used for absolute quantification of metabolites in
the sample and comparison between different samples or time
points.

3. Metabolite assignment is performed in reference standards as
described in [49–51] with a number of methods available for
different sample types. Important considerations are that peak
position shifts due to sample properties (i.e., pH, osmolality)
and that line widths change with change in the magnetic field
strength, sample viscosity, and composition possibly leading to
changes in peak overlaps that can lead to errors in assignments.
Thus, assignment and quantification should be done using
information for comparable systems with specific assignment
and quantification methods available, for example, for human
blood or cerebrospinal fluid [52]. Several general methods are
available, but prior to their utilization, the user should adjust
parameters for specific sample set (reviewed recently in [53]).

A number of preprocessing steps are universally required for the
development of mechanistic models regardless of the modeling
approach and omics data collected. These include:

3.2 Prepare Omics

Data for Further Model

Development

1. Data assignment and quantification.

2. Using either novel data or information available in published
databases, high quality, and relevant longitudinal data is
required to build the model and optimize parameters. For
metabolism modeling, it is essential to have assigned and quan-
tified features measured for the specific biological system under
conditions of interest. Genomics, transcriptomics, and/or pro-
teomics should be used for contextualization of genome-scale
models, and metabolomics/lipidomics or flux data are used for
parameter determination in kinetic models or network optimi-
zation in GENs. Kinetic parameters are available for many
enzymatic reactions from ex vivo measurements (Table 1).

3. Missing data imputation: Due to biological or technical rea-
sons, some features will remain unidentified or unquantified.
Depending on the cause for missing data, analysts should fol-
low different strategies. Features with a large number of miss-
ing values across conditions (of the order of 20–30% missing
values) should be excluded from further analysis. Features with
low abundance or undetected in specific samples where values
fall below levels of detection can be imputed with a value that is
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a ratio of the lowest measurable value for the species (using 1=3
or 1=5 of the lowest measured value for that feature) or set to
0. Values missing due to experimental or technical errors can be
imputed using computational methods, calculating missing
values based on comparison with measured values in other
samples determined to be similar. Extensive benchmarking of
imputation methods has been presented recently [54] showing
that in the majority of tests, random forest-based imputation
provides an excellent approach for missing data estimates.

4. Data scaling from different experimental platforms: As a variety
of data sources can be used in the development of a metabolic
model, it is crucial to perform appropriate normalization for
each data type using either standard or internal references or
relative feature levels before combining data for model build-
ing. The analyst must also decide if low and high abundance
analytes are placed on the same scale to ensure equal represen-
tation. Methods have been discussed in great details previously
[55, 56].

For the network of interest, first develop a set of ODEs or PDEs
describing all reactions of interest in the model with appropriate
dependencies and sink points in the format of Eq. 1. For large
systems, an exact solution is not possible, and generally two
approaches are applied. (1) Generate a quasi-steady-state assump-
tion and resolve to the genome-scale model (2.b), or (2) use math-
ematical functions to describe V(E, c, k) function applying available,
measured, or estimated values for parameters (2.c):

3.3 Develop a

Mechanistic Model of

Metabolic Processes

of Interest

1. For genome-scale model development, omics data provided for
the system of interest (e.g., genomics, transcriptomics, proteo-
mics, metabolomics, lipidomics) are used for the development
of the personalized genome-scale FBA model. In particular,
gene transcription and gene mutation information are
integrated to develop contextualized genome-scale models
where information about lack of function (through either
mutation or gene knockdown) can be used directly to delete
unrelated reactions. Methods for optimization of models are
available in COBRA [57] or RAVEN [58]. Both tools operate
in MATLAB or Python and provide a variety of different opti-
mization routines for the development of contextualized mod-
els and optimization of metabolic flux. Recon3D provides a
complete known metabolic network [25, 57]. The COBRA
platform allows for the addition of new reactions and features.

2. For dynamic network reactions, thermodynamic information
can be obtained from existing databases (Table 1) ensuring that
the kinetic information is curated and is up-to-date and for the
appropriate species under investigation. The functional form of
V(E, c, k) can be approximated using Michaelis-Menten
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equation or other, more detailed formalisms and can possibly
include inhibition and activation interactions. It is critical to
ensure that used kinetic constants match the model type and
units of metabolomic data.

3. FBA must be optimized for desired properties. This can be
achieved by maximizing, for example, biomass production or
cell growth using COBRA [57]. For dynamic models, kinetic
parameters can be optimized from available data for the system.
Optimization can be done using numerical methods or ML
methods (e.g., LSMA; see Method B).

4. Experimentally validate FBA model by comparing predicted
individual metabolite levels with matched pairs of metabolites
measured in the metabolomic screen.

5. If stochastic aspects are significant for simulation, include ran-
domness, for example, by using chemical Langevin formulation
or Poisson mixture model (PMM) as recently presented [59].

3.4 Integrate

Mechanistic Model of

Metabolic Processes

with ML

1. Integrate in silico fluxomic and other omics data: Data integra-
tion can be performed in three ways – (a) early integration,
concatenation of data into a unique dataset, (b) intermediate
integration wherein the ML model is built using a combined
transformation of the separate input sets, and (c) late integra-
tion, where a separate model is built for each dataset and
models are fused. Following integration, all data should be
scaled, for example, by z-score scaling (see 2c). In the cross-
validation process, training data should be normalized, and the
same normalization parameters should be used for the test set.
In the case of z-score normalization, the training set is normal-
ized, and the mean and standard deviation values of the train-
ing set are used to normalize the test set in order to prevent
information leakage.

2. Develop ML architecture that allows analysis of integrated data:
A variety of methods are available and can be explored with
method proposed below resulting from [60]. Approaches for
fusing experimental results with knowledge-based in silico
models through interpretable ML are reviewed here [33].

3.5 Examples of

Methods

1. Combination of data: Data-independent ensemble ML can be
used to combine all data (using the late integration approach;
see above) including omics as well as the predicted metabolic
data run by individual base learners. Subsequently, prediction
and probabilities of prediction are combined for each base
learner under meta-learner output with weights for each pre-
dictor. The final probability of result is p ¼ P

i

piwi where i is
base learner with probability of prediction pi and weight wi.
Alternatively, fluxomic data can be combined with other omics
data and analyzed together using ML (with early or



��

�

434 Miroslava Cuperlovic-Culf et al.

intermediate data integration). Multimodal artificial neural
network (MANN) method has shown the best performance
for combined analysis of fluxomic and transcriptomic data [33];
however, different combinations and sizes of data require opti-
mization of ML methods for any given application.

2. Optimization of hyperparameters for the model: Gradient boost-
ing machine (GBM) algorithm can be used with Bayesian
optimization for determining optimal hyperparameter values.
Bayesian optimization is run in multiple iterations with fivefold
cross validation used to determine the performance of selected
hyperparameters. The weighted log loss must be calculated to
determine performance metric for GBM and also to determine
model performance on validation sets. The formula for
weighted log loss is:

1
N S

XN S

i¼1

� wRyi log pi
� �þ 1� yi

� �
log 1� pi

� ��� ð2Þ

with yi the true class label of sample i, pi the predicted probabil-
ity of sample i having predicted label, wR the weight for given
label, and Ns the total number of samples. Overfitting can be
prevented by early stopping of the optimization process. Mean-
weighted log loss with one standard error over all five folds of
cross validation is used to determine the best hyperparameter
set performance.

3. Test quality of ML model using cross validation: Data are split
into training and testing and validation datasets. The training
set, usually randomly selected 80% of the complete dataset, is
used for training the model with a user-defined set of hyper-
parameters. The validation part of the data (usually the remain-
ing 20%) is used to assess model performance according to the
set of hyperparameters optimized using the training set.

4. Test classifier performance for multiple iterations of randomized
training/validation and testing data split: Preferred perfor-
mance metrices are weighted log loss (Eq. 2), area under the
receiver operator curve (AUROC), as well as measures com-
paring true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) including:

Sensitivity ¼ TP
TPþ FN

ð3Þ

Specificity ¼ TN
TNþ FN

ð4Þ

Balanced Accuracy ¼ 1
2

TP
TPþ FN

þ TN
TNþ FP

�
ð5Þ
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5. Determine the importance of features in predictive models or
classification: Feature selection for both individual groups of
samples and across combined samples can be done by calculat-
ing SHapley Additive exPlanations (SHAP) values for each
classifier [61].

3.6 Determination of

Parameters for

Mechanistic Models

from Data- or Theory-

Driven ML

1. Develop kinetic or constrainedmetabolic model as listed in 3.3.

2. Generate combinations of input parameters randomly; if infor-
mation is available, constrain parameter values within allowed
range. Parameters can include, for example, kinetic constants,
cell growth rate, cell motility, and media metabolite concentra-
tions. Model output values can include metabolite concentra-
tion change over time, biomass information, and cell density as
calculated by metabolic model.

3. Develop LSTM architecture with input layer, a fully connected
layer, LSTM arrays, and two output layers, one for predicting
peak values of distributions and one for predicting the normal-
ized distributions. Vanilla LSTM is available in MATLAB and
Python (TensorFlow or PyTorch). In the application of GPR,
with prior information, architecture development requires
selection or generation of appropriate kernel functions with
possibility for additive kernel functions.

4. Perform input and output data preprocessing, including data
scaling with, for example, min-max scaling to get all data to the
0–1 range or z-score normalization.

5. Use the calculated molecular value distribution obtained in
3.6.2. with a random combination of parameters to train ML
models.

6. In the application of LSTM, parameters are used as input and
molecular values as output of the neural network model. Ran-
domly divide the data into training and test sets for cross-
validation assessment of model accuracy, or use leave-one-out
cross validation.

7. In LSTM, model input parameters are connected first to all
neurons in the fully connected layer. Select the activation func-
tion (e.g., exponential linear unit), and initialize connection
weights randomly.

8. Optimize the network using, for example, cross entropy, and
calculate the cost function of the neural network using mean
squared error.

9. Evaluate the model using the test set with, for example, calcu-
lation of root mean square error (RMSE) to determine the
difference between LSTM and mechanistic model results.
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10. For prediction of new values, use developed LSTM with new
parameter inputs, and for enhanced accuracy, use the ensemble
approach, for example, with Wisdom of the Crowd analysis. In
this approach, calculations are rerun with the same input, and
similarity scores are calculated between different predictions
using RMSE, R2, or some other similarity assessment function.
Each prediction is evaluated with an assessment score relative
to the average prediction and the result with the minimal score,
i.e., minimal deviation from the average score is selected as the
final prediction result.
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