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scRNAseq Single-cell RNA sequencing
UNC Unknown node correspondence methods
WGCNA Weighted network approach

1  Introduction

Biological networks can be described as a set of biological molecules represented as 
nodes (also called vertices) connected, via a measure of the strength of a biomolecu-
lar interaction, by edges. Metabolic and lipidomic networks connect metabolites 
and lipids as nodes through edges representing the chemical or metabolic reactions 
that generate product from substrate (or reactant). The association (edges) between 
molecules (nodes) can stem from different types of relationships or interactions that 
provide information about the chemical or metabolic reactions that link two nodes, 
their correlation or co-behavior in a specific condition, or their chemical properties 
that define node relationships. Metabolic reaction networks, connecting metabolites 
as nodes through chemical reactions as edges, describe systems that are responsible 
for maintaining homeostasis and regulating cellular functions. The construction of 
complete chemical reaction networks of metabolism are informed by the following:

 (i) The precursor and product of an enzymatic reaction
 (ii) Reaction stoichiometry and enzyme kinetics
 (iii) Reaction directionality
 (iv) Subcellular localization of reaction

Pathway is a set of context-dependent interactions with clear beginning and end and 
often delineated directionality.

Network is any structure of nodes connected with edges. Metabolic network aims to 
provide context-free representation of the complete process often by combining 
pathways.

Inclusion of all these properties would allow both network analysis and simula-
tion. Alternatively, network development that only includes undirected, correlation 
information provide networks of relationships without causality or modeling utility.

Another layer of metabolic network complexity is that the subcellular membrane- 
bound compartments allow for the separation of different environments within the 
cell while at the same time bringing enzymes and their corresponding substrates in 
close proximity. Consequently, compartmentalization provides the optimal condi-
tion for enzymatic reaction. In constructing metabolic networks, information asso-
ciated to subcellular compartmentalization of enzymatic reaction can be incorporated 
when either data or knowledge is available. Compartments provide optimal condi-
tions for function of enzymes and additionally allow equivalent chemicals to be 
utilized for different purposes. Enzymes from the same family can reside across 
different compartments with members possibly functioning under slightly different 
conditions.

T. Nguyen-Tran et al.
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Networks or graphs, consist of nodes, i.e. vertices that correspond to objects, for 
example metabolites or lipids, and edges that show connections between objects. 
Edges can have weights indicating strengths of connections. In undirected graphs, 
edges have no direction, and only show relationship not causality. In directed 
graphs, edges have direction indicating one-way relationships showing that edge 
can only transverses in a single direction. In a bipartite graph, vertices are separated 
into two sets, where nodes from one set can be unidirectionally connected to any 
node in the other set, but there are no edges within nodes of the same set. Graphs 
can be also multi-edge containing multiple edges between same two nodes, for 
example, edge for data and edge for knowledge. Hypergraph consists of nodes and 
hyperedges, where an edge can join any number of vertices. Graph is called con-
nected if there is a connection between any two points and complete if every pair of 
vertices is connected by a unique edge.

Through the web of metabolic reactions, biological systems are in constant flux 
with metabolites in a dynamic interaction with other biological molecules, experi-
encing continual chemical change. Metabolites concentrations, their destiny in a 
system, are thus determined by other members of the network, and greater under-
standing of either individual metabolites’ behavior or the biological systems can 
only come from the analysis of the network of associates.

2  Network Development Methods

High-throughput bioanalytical methods are providing increasingly detailed molecu-
lar coverage in a variety of sample types delivering range of datasets that can be 
explored through network investigation. At the same time, our knowledge about 
metabolite and lipid functions and processes is increasing, and there is a growing 
appreciation of the importance of their relationships within pathways and networks. 
Metabolic networks can be derived from data – data-driven networks, from biologi-
cal information in knowledge-driven networks or in a hybrid approach combining 
knowledge and data. Each of these approaches comes with its own set of advantages 
and disadvantages and the road taken has to be optimized based on the application 
of interest.

Knowledge-based network development includes combining enzymatic reaction 
information from databases or known pathways as well as literature derivation of, 
for example, possible enzyme-metabolite relationships. Derivation of this informa-
tion can be done directly from existing databases (some examples shown in Table 1) 
or from literature search, manually or with the help of Natural Language Processing 
methods (NLP). Clearly, in this approach, the network depends on the level of prior 
biological knowledge provided in selected information resource. These types of net-
works provide a map for observing interactions from the data in a context of pre-
defined possibilities. Knowledge-based networks can be small, for example, only 
observing individual pathways and showing relationships between only small 

Network Development and Comparison in Lipidomics and Metabolomics



42

Ta
bl

e 
1 

E
xa

m
pl

es
 o

f 
re

so
ur

ce
s 

fo
r 

kn
ow

le
dg

e-
ba

se
d 

ne
tw

or
k 

an
d 

pa
th

w
ay

 in
fo

rm
at

io
n

Pa
th

w
ay

 a
nd

 n
et

w
or

k 
in

fo
rm

at
io

n 
da

ta
ba

se
s

B
ri

ef
 in

fo
rm

at
io

n
N

um
be

r 
of

 m
et

ab
ol

ic
 

pa
th

w
ay

s
R

ef
er

en
ce

 a
nd

 s
ite

K
yo

to
 E

nc
yc

lo
pe

di
a 

of
 

G
en

es
 a

nd
 G

en
om

es
 

(K
E

G
G

)

M
aj

or
 d

at
ab

as
e 

of
 m

et
ab

ol
ic

 p
at

hw
ay

s
~6

50
0 

(N
ov

 1
0,

 2
02

2)
[1

8]
ht

tp
s:

//w
w

w
.k

eg
g.

jp
/

L
IP

ID
 M

A
PS

 R
ea

ct
io

n 
E

xp
lo

re
r

L
ip

id
 r

ea
ct

io
ns

 d
at

ab
as

e 
is

 li
nk

ed
 to

 th
e 

L
IP

ID
 M

A
PS

®
 

St
ru

ct
ur

e 
D

at
ab

as
e 

(L
M

SD
)

~4
7,

80
0 

un
iq

ue
 li

pi
d 

st
ru

ct
ur

es
ht

tp
s:

//w
w

w
.li

pi
dm

ap
s.

or
g/

Sw
is

sL
ip

id
s

D
at

ab
as

e 
an

d 
se

ar
ch

ab
le

 s
ite

 f
or

 li
pi

d 
m

et
ab

ol
ic

 r
ea

ct
io

ns
77

9,
68

8 
lip

id
 s

pe
ci

es
[1

]
ht

tp
s:

//w
w

w
.s

w
is

sl
ip

id
s.

or
g

Sm
al

l M
ol

ec
ul

e 
Pa

th
w

ay
 

D
at

ab
as

e 
(S

M
D

B
)

D
at

ab
as

e 
co

nt
ai

ni
ng

 d
et

ai
le

d 
in

fo
rm

at
io

n 
ab

ou
t s

m
al

l 
m

ol
ec

ul
e 

m
et

ab
ol

ite
s 

fo
un

d 
in

 th
e 

hu
m

an
 b

od
y

~2
9,

01
1

ht
tp

://
w

w
w

.s
m

pd
b.

ca
/

R
he

a
E

xp
er

t-
cu

ra
te

d 
kn

ow
le

dg
eb

as
e 

of
 c

he
m

ic
al

 a
nd

 tr
an

sp
or

t 
re

ac
tio

ns
 o

f 
bi

ol
og

ic
al

 in
te

re
st

15
,4

53
 r

ea
ct

io
ns

 w
ith

 
12

,9
72

 u
ni

qu
e 

co
m

po
un

ds
R

he
a,

 th
e 

re
ac

tio
n 

kn
ow

le
dg

eb
as

e 
in

 
20

22
 [

4]
ht

tp
s:

//w
w

w
.r

he
a-

 db
.o

rg
/

R
ea

ct
om

e
R

el
at

io
na

l d
at

ab
as

e 
of

 s
ig

na
lin

g 
an

d 
m

et
ab

ol
ic

 m
ol

ec
ul

es
 

an
d 

th
ei

r 
re

la
tio

ns
 o

rg
an

iz
ed

 in
to

 b
io

lo
gi

ca
l p

at
hw

ay
s 

an
d 

pr
oc

es
se

s

O
ve

ra
ll 

m
et

ab
ol

ic
 m

ap
ht

tp
s:

//r
ea

ct
om

e.
or

g/
[1

3]

M
et

aC
yc

 (
bi

oC
yc

 –
 a

dd
 

se
pa

ra
te

ly
)

C
ur

at
ed

 d
at

ab
as

e 
of

 e
xp

er
im

en
ta

lly
 e

lu
ci

da
te

d 
m

et
ab

ol
ic

 
pa

th
w

ay
s 

fr
om

 a
ll 

do
m

ai
ns

 o
f 

lif
e

~2
0,

00
0 

ac
ro

ss
 d

if
fe

re
nt

 
sp

ec
ie

s
ht

tp
s:

//m
et

ac
yc

.o
rg

/

B
io

ca
rt

a
D

at
ab

as
e 

of
 m

ap
s 

of
 b

io
ch

em
ic

al
 p

at
hw

ay
s 

in
cl

ud
in

g 
m

et
ab

ol
ic

 a
nd

 s
ig

na
lin

g 
tr

an
sd

uc
tio

n 
pa

th
w

ay
s

M
et

ab
ol

ic
 m

ap
s

ht
tp

s:
//m

aa
ya

nl
ab

.c
lo

ud
/

H
ar

m
on

iz
om

e/
da

ta
se

t/
B

io
ca

rt
a+

Pa
th

w
ay

s
B

io
PA

N
W

eb
-b

as
ed

 a
pp

lic
at

io
n 

fo
r 

th
e 

vi
su

al
iz

at
io

n 
of

 li
pi

do
m

ic
s 

da
ta

 o
n 

a 
m

am
m

al
ia

n 
lip

id
om

e 
m

et
ab

ol
ic

 p
at

hw
ay

s
D

at
a 

dr
iv

e 
vi

su
al

 
re

pr
es

en
ta

tio
n 

of
 n

et
w

or
ks

ht
tp

s:
//l

ip
id

m
ap

s.
or

g/
bi

op
an

/
[1

4]
L

IN
E

X
L

ip
id

 N
et

w
or

k 
E

xp
lo

re
r 

is
 a

 W
eb

ap
p 

us
ed

 to
 a

na
ly

ze
 li

pi
d 

m
et

ab
ol

ic
 n

et
w

or
ks

 a
nd

 p
ro

vi
de

s 
da

ta
-s

pe
ci

fic
 n

et
w

or
k 

fr
om

 u
se

r 
da

ta

D
at

a 
dr

iv
e 

vi
su

al
 

re
pr

es
en

ta
tio

n 
of

 n
et

w
or

ks
ht

tp
s:

//e
xb

io
.w

zw
.tu

m
.d

e/
lin

ex
/

[2
1]

T. Nguyen-Tran et al.

https://www.kegg.jp/
https://www.lipidmaps.org/
https://www.swisslipids.org
http://www.smpdb.ca/
https://www.rhea-db.org/
https://reactome.org/
https://metacyc.org/
https://maayanlab.cloud/Harmonizome/dataset/Biocarta+Pathways
https://maayanlab.cloud/Harmonizome/dataset/Biocarta+Pathways
https://maayanlab.cloud/Harmonizome/dataset/Biocarta+Pathways
https://lipidmaps.org/biopan/
https://exbio.wzw.tum.de/linex/


43

subset of molecules based on some property of interest. Alternatively, these net-
works can represent a large-scale efforts in building genome-scale, i.e. complete, 
metabolic processes networks for subsequent system modeling [11]. Some exam-
ples of metabolic knowledge resources as well as knowledge-based networks are 
listed in Table 1. An advantage of knowledge-based networks is that they do not rely 
on the quality, quantity, or accuracy of the data in user’s possession and thus will not 
be biased by small, sparse, or erroneous datasets. However, as knowledge-based 
networks depend on the current biological knowledge, it is natural to assume that 
they still have gaps or missing links in information that have not been discovered yet 
or is not readily available in resources utilized for creation of a network. Also, with 
different level of knowledge available for  distinct biological systems number of 
known interactions varies between species as well as metabolic processes. As an 
example, Recon3D represents the most comprehensive human metabolic network 
model to date. The version of this genome-scale model made available on 
MetabolicAtlas has 13,070 reactions and 8369 metabolites (current version avail-
able in metabolicatlas.org [32]. When building metabolic networks for other spe-
cies, a number of methods are made available including PathoLogic [20], which is 
used to build pathways from predicted enzymes that can be further validated using 
Semi-Automated Validation infrastructure (SAVI) software applying range of cura-
tion decisions [34]. With lipidomics methods becoming increasingly powerful and 
providing concentrations for hundreds of individual lipid molecules, there is an 
increasing effort to also deliver corresponding knowledge-based networks for lipi-
dome. BioPAN [14] and LINEX [21] provide users with the pathway mapping for 
lipidomic dataset, where in both cases knowledge-based lipid networks are used to 
provide insights about functional lipid associations.

An alternative knowledge-based approach relies on the knowledge of properties 
of the molecular set rather than knowledge of biological interactions. In this case, 
chemical ontologies or molecular characteristics can be used to educate building of 
relationships among compounds. In the example of ChEBI approach [15], users’ 
entry is represented in a network based on chemical properties information. This is 
a very useful approach for exploring known properties for molecules of interest; 
however, in this case network is developed for representation of properties, not for 
further utilization and can be a useful way to analyze chemical properties of a 
selected set of compounds. However this approach does not provide avenue for 
analysis of network interactions, only organization of known information. An alter-
native way to explore statistical enrichment of molecular groups based on chemical 
ontologies as well as structural similarities is provided by ChemRICH [6]. In this 
method, the goal is to step away from reliance on often limiting pathway informa-
tion in obtaining representation of the set and instead use structural similarities and 
chemical ontologies to map molecules (metabolites or lipids). This approach fol-
lows the notion that chemically similar compounds remain in biochemical proxim-
ity [7], thus possibly providing a way for assigning unknown molecules based on 
their properties and network clusters. Chemical ontology or properties networks can 
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Fig. 1 Most methods for network development are combining knowledge and data to give the 
most accurate network for features of interest. Based on information in databases and literature in 
knowledge-based approach, the user creates connections between features. In data-driven 
approach, the user relies on data and mathematical procedure to establish relationships. Combining 
the results of two approaches is done in order to reduce errors of the two methods and establish 
closest network to reality

be utilized to determine related compounds through their shared class belongings, 
where graph distance between molecular node and a class node can be used to quan-
tify relatedness between pairs of compounds (Fig. 1).

As a rule, data-driven methods for network derivation depend on the availability 
of datasets of sufficiently high quality and quantity and rely on a variety of mathe-
matical tools to build network directly from the data. Network edge determination, 
in this case, searches for dependences or similarities between node behaviors in 
samples or similarities in node properties based on a measure of choice. Applications 
for these highly versatile approaches range from spectral assignments [35] to deri-
vation of metabolic or signaling processes functions or dependencies between fea-
tures or samples (reviewed recently in [3]. A number of methods have originally 
been developed for general graph theory and a number of them are applied to other 
omics datasets, but they are in general also appropriate for metabolomics or lipido-
mics data as well. Data-driven methods can be further combined with knowledge- 
based networks in hybrid approaches. In hybrid methods the  attempt  is to take 
advantage of the available knowledge to either initiate network development from 
the data by using known interactions as a base for growing more extensive networks 
from data or to threshold fully data-derived networks at the end of the process. 
Several different approaches have been developed and tested for data-driven appli-
cations, without or with combination to knowledge-based networks. These method-
ologies can be broadly divided into correlation and classification-based network 
development methods.

T. Nguyen-Tran et al.
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3  Correlation-Based Methods for Molecular 
Network Derivation

Metabolites and lipids that are linked through enzymatic or signaling pathways 
often show co-dependencies in the values that are represented through correlated 
changes in their concentrations across samples. Calculation of these pairwise cor-
relations based on the data from metabolomics or lipidomics measurements can 
provide data-derived adjacency matrix, where it is hypothesized that two metabo-
lites are linked if their correlation value is statistically significant and larger than a 
user-defined threshold. Correlation between molecules can then be viewed as the 
network edge value and a way to construct molecular network. General steps in 
constructing network from correlation analysis of the data are shown in Fig. 2.

The standard approach for correlation derivation is Pearson method, where  

correlation is calculated as r
X X Y Y

X X Y Y

i
N

i i

i
N

i i
N

i

�
� �� � �� �

� �� � � �� �
�

� �

1

1

2

1

2

 for features X and 

Y measured across N samples and having mean values of X  and Y , respectively. 
Pearson’s correlations are easy to interpret and calculate; however, this method does 
not accurately determine nonlinear dependencies. Alternative methods include 
Spearman  – rank-based method, distance correlation [38]  – calculating distance 
covariance, or mutual information [37] – machine learning-based correlation analy-
sis method. Correlation network design with any of these approaches does not guar-
antee the capture of biologically relevant mechanisms nor does it ensure selection 
of only direct relationships. A number of additional approaches have been devel-
oped in order to help narrow correlations down to only significant ones. The 

Fig. 2 Steps involved in the construction of molecular network from data using correlation-based 
methods including (a) data quantification and preprocessing; (b) determination of pairwise corre-
lations; (c) selection of correlations that are statistically significantly different from zero through 
comparison of p-value for significance of the difference of correlation from zero with a signifi-
cance level observed after appropriate multiple hypothesis testing. Finally, remaining edges can be 
represented in a network plot with either binary or weighted edges

Network Development and Comparison in Lipidomics and Metabolomics
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simplest approach utilizes threshold parameters for selection of relevant edges 
through p-value of correlation level significance as well as direct correlation level 
thresholding. In addition, regardless of the method of choice, correlation values are 
sample size dependent and thus networks have to be constrained by appropriate 
thresholds for statistical significance (p-value) and/or correlation level for reduction 
of the effect of sample size as shown by [40]. Once the significant correlation values 
are selected in a hard-threshold approach, they can be combined in an Adjacency 
matrix A =  [aij] with entries that are either 1 or 0 decided up on using threshold 
values as

 
a

r r p p
ij

ij ij�
� ��

�
�

1

0

if and

otherwise

threshold threshold

 

Alternatively, actual correlation values can be kept as edge weights showing pairs’ 
“closeness” level in the soft threshold application.

The statistical significance can be determined using T value calculation forcor-

relation as T r N
rij
ij

�
�
�

2

1
2

, where rij is the correlation value between nodes i and j 

and N is a number of samples used for correlation calculation. P-value can be deter-
mined from T using Student’s t cumulative distribution function if normal distribu-
tion can be assumed for correlations. Fisher’s z-transformation of correlation levels 
establishes normal distribution for correlation values. Fisher’s z-transformed corre-

lation is obtained as z
r
rij
ij

ij

�
�

�
1

2

1

1
ln  and corresponding p-values are calculated as 

p z N Mij ij� � �� � � �� �� �2 1 3 2� (  for a sample set with N samples and M fea-
tures; θ corresponds to cumulative distribution function of standard normal distribu-

tion. It is important to notice that p-value in both approaches depend on the sample 
size or both size of sample and feature space. Correlation values are generally sam-
ple size dependent, where in small sample sizes, it is more likely to get spuriously 
large correlation values due to random sample variations, while with sample size 
increase individual sample variations contribute less and correlations become a bet-
ter reflection of the population levels. In smaller populations p-value for correla-
tions is larger, thereby making higher correlation values statistically insignificant 
and reducing the error caused by artificially large correlations of small sets. Although 
thresholding to the significance level helps reduce number of low significance 
edges, it does not guaranty that only direct relationships are kept in the network.

Selection of an optimal p-value correlation coefficient threshold depends on the 
distribution of the number of edges at different p-values [40] similarly to p-value 
threshold selection performed based on the p-value distribution in Benjamini- 
Hochberg FDR multiple hypotheses testing corrected set [9]. Therefore, multiple 
testing correction should be applied to significance thresholding of correlations, 
where Bonferroni correction, as the most conservative approach, has been utilized 
to determine nominal significance level of a = 0.01 for a given sample size and can 

T. Nguyen-Tran et al.
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then be used to determine corrected p-value correlation threshold. In this way, 
p-value thresholding follows statistical rules and is determined appropriately for the 
sample size. Setting of correlation value threshold is less clearly defined. Shen et al. 
[36] have proposed a theoretically derived threshold for distance correlation that 

depends exclusively on sample size and is determined as � �N F
N

� ��
�
�

�
�
� �

�
2 1

0 02
1

1 .
, 

where F�
�1  is the inverse cumulative distribution function with symmetric Beta dis-

tribution with shape parameter equal to 
1

2

1

2
3 1N N �� � ��

�
�

�
�
� . This approach pro-

vides an interesting, theory-based method for general threshold dependence on 
sample size in a random dataset giving theoretical lower bound for the threshold; 
however, it does not include any specific properties of data. Toubiana and Maruenda 
[40] proposed an iterative approach where topologies of the correlation networks 
constructed at different levels of threshold are compared and the point of significant 
change is selected as an analysis threshold. In principle, this approach can be applied 
to any correlation analysis methodology. In the vicinity of the optimal threshold 
level for correlation value, the number of network edges is expected to remain stable 
with gradual increase in p-value stringency, going from 0.05 to 0.01 as a cut-off 
point for statistical significance. Following this assumption, the analysis of the sig-
nificance of changes in the edge number, using statistical methods such as modified 
Cox method can be implemented to determine optimal thresholds for both correla-
tion and p-value [40].

Edges between nodes in correlation matrix should ideally correspond to meta-
bolic fluxes, that is, reactions in the metabolic network. However, a number of fac-
tors influence the correlation results including short-term changes in enzymatic 
activity due to inhibitors or activations, random fluctuations due to noise in the data 
or reactions, metabolic processes compartmentalization in cells and organs, involve-
ment of metabolites in multiple pathways, or incomplete experimental coverage. 
Additionally, through the network, interaction between metabolites could result in 
indirect correlations leading to highly dense networks. Pairwise correlations that are 
caused by the presence of mediators can be high and thus remain after correlation 
thresholding. Issue of indirect correlations is addressed in the Gaussian graphical 
model approach used to determine partial correlations, that is, remove indirect 
dependencies. Briefly, Krumsiek et al. [23] showed that when dataset includes many 
more samples then features correlation matrix has a full rank andit is possible to 
calculate an inverse of correlation matrix. Following our nomenclature above, par-
tial correlation coefficients can be calculated as � � � �ij ij ii jj� � / , where (ϑij) = R−1 
and R is the correlation adjacency matrix. Partial correlation values correspond to 
pairwise correlation of metabolites i, j after correction for the correlation through all 
the other metabolites. Partial correlation in this way accounts for the presence of 
confounders and covariates, that is, correlation between features through the net-
work. This is a very powerful approach when significant number of samples is made 
available (Fig. 3 shows graphical explanation of the approach).

In a case when the number of features is larger than the number of samples or if 
any of the features are a linear combination of other features in the set, the resulting 
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Fig. 3 Geometrical representation of the partial correlation through removal of orthogonal inter-
actions. (a) Correlation between two features, a and b with values across measurements repre-
sented vectors in the figure. a and b are not orthogonal to vector representing feature c and are thus 
correlated with feature c. (b) Projections of vectors a and b onto a plane orthogonal to vector of 
feature c provide value for correlation between and b with contributions of c removed represented 
as a cosine of angle between projects

covariance matrix is ill-conditioned, that is, singular and matrix inversion and thus 
partial correlation calculation through inversion is not possible. GeneNet [30, 33] is 
initially built for analysis of genomics data; however, it has been now successfully 
applied to metabolomics as well [12]. In order to allow determination of partial cor-
relations in smaller sample sizes, GeneNet utilizes novel algorithm for shrinking 
correlation (covariance) matrix making it nonsingular and allowing inversion and 
derivation of partial correlation matrix possible for all sample sizes. The methodol-
ogy used for correction of covariance matrix in this approach is analytical shrinkage 
estimation of covariance and partial correlation matrices on model selection using 
local FDR multiple testing [33]. In GeneNet, authors decided to shrink correlation 
matrix toward identity matrix while leaving empirical variances unchanged. The 
goal of GeneNet is to provide a graph, where edges show direct dependencies 
between nodes. Alternative methods for covariance matrix shrinkage have been pro-
posed in order to provide improvement in network reconstruction performance [10].

Benedetti et al. [8] proposed an algorithm that optimizes correlation level cutoff 
selection through maximization of the overlap between the inferred network and 
available biological, prior, knowledge. With this approach, the focus is on finding 
network threshold that has the highest overlap with the known biological network, 
rather than utilizing predefined p-value threshold. Several methods have been com-
pared in the analysis including Pearson correlation network, inversion of covariance 
matrix, and GeneNet, where the approach of Benedetti et al. showed the best perfor-
mance overall. Interestingly, even in the optimization using a very limited 
knowledge- based network, authors were able to obtain significantly better network 
overall.

An alternative approach replaces need for user-defined cut-off point with the 
user-specified power value for correlations in weighted network approach (WGCNA) 
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[25]. WGCNA produces a fully connected network with edge weights and can be 
utilized to determine clusters of co-regulated molecules. In the original version, 
WGCNA is based on Pearson’s correlation matrix; however, recently other correla-
tion approaches have been tested with this method [42]. In WGCNA, the initial step 
is the calculation of correlation matrix that is transformed by rising all values to a 
“soft threshold power,” that is, value that is used to power the correlation of feature 
thereby emphasizing strong correlations. Soft power and threshold for the trans-
formed correlation matrix are optimized in this approach for maximal scale-free 
properties of the selected network. The scale-free network property is optimized by 
selecting threshold for soft power transformed correlation values that leads to a best 
linear fit for log10(H(d)) vs log10(d), where d corresponds to a degree and H(d) is 
distribution of a degree d across the network. Soft power and threshold are deter-
mined for each sample set separately by maximizing R2 value for the scale-free plot. 
Specific criteria in selecting correlation exponent in soft thresholding with weights 
are as follows (following recommendations of [41]: (a) power leads to a network 
satisfying scale-free topology at least approximately; (b) the mean connectivity 
should be high so that the network contains enough information (e.g., for module 
detection); (c) the slope of the regression line between log(p(k)) and log(k) should 
be negative (typically smaller than −2). The main result of a WGCNA method is 
network that is used for the determination of clusters, that is, node modules. These 
modules often represent specific processes, and highly connected modules have 
been shown to have, for example, major regulatory role. Although this is an interest-
ing approach for selection of major nodes through correlation analysis as well as 
clustering, WGCNA does not focus on the determine of single-step enzymatic reac-
tions although they are of major interest in metabolomics and lipidomics analysis. 
Additionally, WGCNA method’s assumption of a scale-free network topology is not 
always appropriate, particularly in metabolic networks.

It should be underlined that all correlation approaches thus far can only be 
viewed as exploratory methods developed to identify functionally related groups of 
metabolites or lipids and are not guaranteed to provide only direct mechanistic 
interactions. Even in the case of partial correlation analysis, it cannot ensure presen-
tation of only direct interaction particularly in a case of partial metabolite or lipid 
coverage with a range of latent variables. Results of these networks need to be fur-
ther validated and interpreted using biological knowledge and focused experimental 
analysis; however, they provide very valuable information to guide future experi-
ments. In spite of their approximate nature, they provide valuable information about 
network changes across experimental conditions or phenotypes.
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Fig. 4 Steps involved in the construction of molecular network from data using general 
classification- based methods including (a) data quantification and preprocessing; (b) determina-
tion of regression relationship between features; (c) selection of significant edges based on regres-
sion analysis and continuing to grow network for all features

4  Classification-Based Methods

Network derivation using classification approaches is once again developed exten-
sively for genomics with metabolomics and lipidomics only starting to benefit from 
these methods. In this type of approaches, regression of each feature i ∈ {1, …., N} 
is estimated against all the remaining N-1 features. Edge between pair of features is 

calculated as r signij i
j

i
j

j
i� � �� � � � � �� � � , where �i

j� �
is the regression coefficient of 

predictor variable xi for the response xj (Fig. 4). This approach can be used for the 
determination of regression-based edges using a variety of methods, outlined in 
great detail in [33].

Random forest (RF), a classification method, has been proposed by several 
authors as a base for data-driven network derivation. Two interesting examples are 
GENIE3 [17], directly applying RF to the dataset and iRafNet [31], combining dif-
ferent data types under a unified RF framework. Both approaches have been devel-
oped for genomics but are directly applicable to metabolomics or lipidomics data as 
well. The GENIE3 model considers characteristics (e.g., concentration or expres-
sion level) of each feature as a function of values for all other features sampled 
randomly from the complete dataset. iRafNet, a subset of potential network part-
ners, is selected based on the information in other provided datasets. When addi-
tional data or information is available, iRafNet generally performs better, as it 
includes prior knowledge, but in the case of fully unique dataset-driven dataset, two 
methods are equivalent. In this approach, determination of network is viewed as a 
collection of M subproblems trying to find regulators for M features, where determi-
nation of regulators is viewed as a classification equivalent to feature selection prob-
lem in classification.

In both approaches, the measure of feature xi is modeled as a function of the 
values for other features using RF, that is, tree ensemble. Features that are strong 
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predictors of xi are considered as regulators of this feature. Specifically, the impor-
tance score for feature xk as a predictor of xi, Ski is equal to the total decrease in node 
impurity following the splitting of samples based on the measurements of feature xk.

Partial least squares (PLS) regression is also presented as a powerful method for 
exploring relationships between biological molecules, with application for lipid net-
work derivation presented by Kujala et al. [24]. Connectivity score in this approach 
is based on the fitting of n PLS models one for each lipid, where each lipid measure-
ments are predicted with n-1 remaining lipids. The latent factors t j

l� �  for lipid j are 
a linear combination of values for all other lipids with PLS determined regression 

coefficient c j
l� �  such as x tj

l

l j
l� � �

� � �
�
� �

1
; ϑ is number of orthogonal latent factors 

used for the fitting, that is, number of PLS components used in the model. The con-
nectivity score that can be viewed broadly as the edge between pair of lipids is cal-

culated from PLS parameters as s
c c

jk
l jl jk

l
l kl kj

l

Æ
Æ Æ

�
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1 1

2
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 providing weights 

for the network.
A number of other supervised machine learning methods have been explored as 

possibly powerful ways to derive feature edges. Applications of LASSO regulariza-
tion method and Bayesian network inference have been recently reviewed [16]. 
With LASSO, regularization is explored as a way to reduce model complexity. L1 
regularization of LASSO is used as a way to push edge coefficients toward zero, in 
a way providing a variable selection thereby reducing model complexity. Bayesian 
networks are directed acyclic graphs providing both dependence and causality 
between features. In this approach, Markov-Chain-Monte-Carlo (MCMC) proce-
dure is used to estimate precision matrix by searching for the best fit with the data 

of large space of possible graph configurations in total 2
1

2

M M �� �
, where M is number 

of nodes, features. Recently, Graph Neural Network (GNN) approach was used by 
Alghamdi et  al. [2] to model cell-wise metabolic flux from single-cell RNA-seq 
data. The scFEA method assumes that the modeling of the flux variations of meta-
bolic modules can be performed using nonlinear function of the changes in enzyme 
levels obtained using transcriptomics and that in all single cells total intermediate 
substrates flux imbalance is minimized. Using scRNAseq data and GNN, this 
approach can model flux through metabolic network from transcriptomics data 
while at the same time providing graph of metabolic modules. Application of neural 
network analysis directly to metabolomics and lipidomics data for network deriva-
tion or analysis is thus far only done by a handful of authors, with an example of 
deep learning use presented by [5]. Further applications of modern classification, 
machine learning, and neural network methodologies in metabolomics and lipido-
mic network derivation and analysis are desired.
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5  Analysis of a Network

Once network is built, it motivates exploration using a variety of methods from 
graph analysis and data mining. Generally, learning based on networks can be 
broadly divided into node classification, link, that is, edges prediction, network clas-
sification, and embedding [29].

Node classification can find a role in the prediction of function of biomolecules 
using semi-supervised learning by grouping nodes within the entire network. In the 
context of metabolic or lipidomic networks, node classification can be used to 
obtain functional similarities between metabolites in one network, for example, bio-
logical system, using information known from other biosystems. Similarly, link, 
that is, edge prediction can be performed as an ML task where known edges are 
used to train the model that is then used to predict additional, missing links from 
network data. Graph classification or regression is utilized to predict properties of 
graphs. When graph is a representation of a molecule, this approach can be used to 
predict molecular properties. In the context of lipidomic or metabolomics network, 
this approach can be used to determine similar metabolic outcomes. Graph embed-
ding is most often a preprocessing step that is used to devise representation of nodes 
or graphs as fixed size vectors making subsequent machine learning analysis easier. 
Graph Neural Networks (GNNs) are a class of deep learning AI methods designed 
to analyze network, graph data, unlike regular deep learning approaches appropriate 
for analysis of vector data. Examples of some GNNs used in biological network 
data analysis are recently reviewed in [29].

6  Network Comparison Methods

Increasing sizes of datasets and abundance of network development methods and 
models introduces the next challenge of trying to derive biological information from 
networks. Analysis can be either aimed at specific characteristics of nodes and 
edges or overall network structure or, more often, investigation of similarities and 
differences between networks in different conditions, that is, health and disease or 
treatment and placebo or changes in the network during time course analysis. 
Comparison between networks in the context of metabolome or lipidome can be 
broadly divided into three different goals:

• Comparison of the overall network equality through analysis of the distance 
between complete networks. In this approach, the goal is to provide numeric 
estimate of the change for the whole network.

• Determination of the major changes between nodes through either/or analysis of 
differences in the number of edges or edge weights, where in the context of meta-
bolic network, this would be an indication of changes in metabolite or lipid 
behavior.
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• Determination of the major changes in edges through analysis of the changes in 
the edge weights. In a metabolic network, this would be an indication of changes 
in reactions, that is, enzymatic functions.

7  Overall Network Comparison

With network analysis becoming a staple in variety of areas, there is an abundance 
of methods for network comparison, and the main issue is the selection of the most 
appropriate approach for the dataset and analysis goals. In an effort to help select 
optimal methodology, Tantardini et al. [39] have recently presented an appraisal of 
several popular network comparison methods for mostly undirected, unweighted 
graphs as well as few methodologies for comparison of directed or weighted net-
works. Although most methods have been developed to deal with significantly 
larger networks than what is generally seen in metabolomics and lipidomics, they 
can easily be applied in these areas as well. Network analysis methods deal with 
either networks with the same node sets (known node correspondence methods, 
KNC) or networks with possibly different node sets (unknown node correspondence 
methods, UNC). UNC methods can be of interest in, for example, comparison of 
metabolic networks between different species, while KNC methods provide direct 
comparison of networks derived from data exploring related sample types (e.g., 
disease vs. control).

The initial task in network comparison is the determination of optimal distance 
metric for graph analysis. An obvious approach is to directly compute differences 
between adjacency matrices between networks using any of the distance calculation 
methods (Euclidean, Jaccard, weighted Jaccard, etc.). Alternatively, the method 
based on the direct node distance comparison is DeltaCon [22]. DeltaCon compares 
similarity between all node pairs in two graphs using Matusita distance:

d s s
N

i j

ij
A

ij
B� � �� ��

�
�

�
�
�

�,
/

1 2
1 2

, where S sA
ij
A� �� ��  and S sB

ij
B� �� ��  are similarity 

matrices for network A and B defined as S = [I + ϵ2D − ϵA]−1 and A is network 
adjacency matrix, D =  diag (ki) is degree matrix of node degree (ki), and ϵ is a small 
positive constant. Computational cost of DeltaCon is (N2) thus for networks in 
metabolomics and lipidome that rarely have more than few hundred nodes this is 
acceptable. This approach provides more significant change for larger weight 
changes or for removing edges, while random changes favorably lead to a smaller 
impact on distance measure.

An alternative method to direct distance analysis is the network alignment or 
graph isomorphism analysis used to directly compare networks in order to deter-
mine conserved and missing nodes and edges across two, pairwise, or multiple net-
work comparisons. Alignment can be performed locally or globally, where local 
alignment tries to align small regions accurately risking failing in finding large, 
conserved connections between subgraphs. Global alignment searches for one-to- 
one mapping of nodes in different networks aiming to overcome shortcomings of 
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local alignment methods. In general, all alignment methods define an objective 
function, measure, or a score of alignment quality and utilize a search algorithm that 
tries to find an optimal solution.

An interesting method developed for metabolic network alignment is H-GRAAL 
[28] specifically designed for the comparison of metabolic networks between differ-
ent species. H-GRAAL and a number of related methods are based on the original 
GRAAL algorithm, which detects statistically significantly similar topological 
regions in large networks in order to highlight conserved or missing nodes and 
edges between two or multiple networks. GRAAL approach introduces concept of 
graphlets that include more detailed description of nodes by incorporating consider-
ation of its degree based on its local neighborhood of connections. Graphlet similar-
ity search is performed over a pair of aligned nodes independently, locally, of all 
other nodes. Large-scale networks make prioritizing of curation challenging and 
with uncertainty in the parts of the network that need further consideration and 
make comparison of networks as well as simulation of systems difficult. Medlock 
and Papin [27] have recently introduced a ML-based approach for automated meta-
bolic model ensemble-driven uncertainty elimination using statistical learning 
(AMMEDEUS) as a way to guide curation of genome-scale metabolic models as 
well as databases.

Clustering of network provides modules of nodes, in our case modules of lipids 
or metabolites, where molecules within a same module are connected by a short 
edge paths and strong connections. Node modules can be determined for any net-
work regardless of the method for network derivation. Kujala et  al. have shown 
module cluster comparison method based on PLS-derived association scores [24]. 
The differences between modular structures in two networks is calculated as 
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, where Fkr(j) is the module, L0 in network k that con-

tains lipid j. |L0| shows the number of lipids that belong to modules in both net-
works. If N = 0, modular structures of the two networks are identical; otherwise, 
p-value for the statistical significance of the modules difference can be calculated as 

p N
P

I N N� � � � � � �� �1
�

� , with sum taken over all P permutations. This approach 

provides information about the changes in network modules. Differential connectiv-
ity for a single node can be obtained using mean absolute distance statistic as 
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  . With this approach, it is possible to obtain differ-

ences bws of nodes as well as for each individual node.
Analysis of maximally dysregulated subnetworks, proposed by Mamano and 

Hayes [26], uses simulated annealing-supported local search for biological network 
alignment. In this approach, simulated annealing was shown to provide the optimal 
solution with better node pairing between networks and good topological and func-
tional similarity scores. Simulated annealing, as a metaheuristic algorithm, is not 
developed for any specific problem and can be applied to any optimization problem 
as long as there is a defined objective function and neighbor relationship and there 
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are solutions for different states. Although the example presented by [26] is in 
protein- protein interaction network, similar approach can be utilized in metabolo-
mics and lipidomics network comparisons, where score function can combine vari-
ous topological and biological similarity measures and simulated annealing 
approach can provide global optimization solution. Once again, methods developed 
for network comparison in different applications present themselves to metabolo-
mics and lipidomics applications, but it is up to the analyst to select the most appro-
priate comparison approaches for the network type, size, and analytical question.

8  Network Visualization

Visualization of networks and network components is an extremely important, intu-
itive way for the interpretation of results, but with variety of network sizes, data 
types, and applications, there is no single solution. Visualization methods range 
from the simplest ones showing adjacency matrices to more complex methods that 
are visualizing force directed layouts in 2D or 3D. Some examples of freely avail-
able network visualization software application are listed in Table 2 in addition to 
many libraries available in different programming languages dedicated to network 
visualization.

We recommend to the reader to freely explore many possible ways for the visual 
presentation of networks as the complexity and size of metabolic network necessi-
ties optimization of visualization for each application.

9  Conclusions

A number of methods for knowledge-based, chemical ontology, or data analyses 
network derivation combined with methods for network analysis, comparison, and 
visualization provide abundance of possibilities, all with their strengths and weak-
nesses. Knowledge-based networks are clearly limited by gaps in current 

Table 2 Examples of free software tools for network visualization

Software 
application Brief outline Reference and Site

Cytoscape Network visualization and analysis tool with a number 
of applications developed for bioinformatics

https://cytoscape.org/

OmicsNet WebGL-based method https://omicsnet.ca
[43]

Gephi General open graph visualization platform. https://gephi.org/
Arena3D Interactive 3D visualization of multimodal networks 

particularly appropriate for polyomics datasets
http://bib.fleming.
gr:3838/Arena3D
[19]
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information and can create incomplete networks. Ontologies can possibly represent 
different concepts at different levels of representation. Data-driven networks in gen-
eral only show co-behaviors and cannot ensure representation of metabolic relation-
ships or direct interdependencies. Major developments are under way and further 
improvements are absolutely required before modeling of complete metabolic net-
work becomes possible.

Only by combining knowledge, large and diverse datasets and appropriate statis-
tical, machine learning, and modeling tools, we will be able to ultimately obtain 
truly a complete in silico representation of biological systems’ weird and wonderful 
metabolic network.
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ELISA Enzyme-linked immunosorbent assay
FDR False discovery rate
GC-FID Gas chromatography-flame ionization detection
GC-MS Gas chromatography-mass spectrometry
hCG Human chorionic gonadotropin
HDL High-density lipoprotein
IEM Inborn errors of metabolism
LAESI Laser ablation electrospray ionization
LC-HRMS Liquid chromatography coupled to high-resolution mass spectrometry
LC-MS Liquid chromatography-mass spectrometry
LDL Low-density lipoprotein
LDTs Laboratory-developed tests
MALDI Matrix-assisted laser desorption/ionization
mGWAS Metabolic genome-wide association studies
ML Machine learning
mQTL Metabolites and quantitative trait loci
MSI Metabolomics Standards Initiative
NMR Nuclear magnetic resonance
PMRN Pharmacometabolomics Research Network
QSP Quantitative and systems pharmacology
SIMS Secondary ion mass spectrometry
SNPs Single nucleotide polymorphisms
VOC Volatile organic compound

1  Introduction

Metabolites are the connecting link between the genome and the environment. With 
the development of novel technologies and bioinformatics approaches, it is now 
possible to study the global metabolic changes in any organisms and cells. 
Metabolomes represent an organism’s physiological state and can be used to help 
diagnose and treat a variety of diseases. Metabolomics as a field emerged in the late 
1990s with the advent of proteomics [1] and is now rapidly evolving. It is the study 
of the metabolome that comprises the entire repertoire of small molecules with 
molecular weights of <1000 Da or <1500 Da excluding biopolymers like proteins 
or nucleic acids [2]. The small molecules are also referred to as metabolites and are 
present in human cells, tissues, and body fluids. They can be studied using large- 
scale detection, quantification, and analysis methodologies. Metabolites are organic 
and inorganic chemicals and are either reactants, intermediates, or end products 
generated during biological enzymatic reactions or may be of xenobiotic origin (i.e., 
the chemicals that are found in living organisms however are not produced by them) 
and are known to bridge gene functions and nongenetic or phenotypic end points 
[3–5]. They exhibit variable chemical properties that range from polar hydrophobic 
compounds and hydrophilic compounds including carbohydrate moieties to nonpo-
lar hydrophobic molecules such as lipids.
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Metabolomics has made significant progress in the past two decades. Nevertheless, 
several aspects of this field are still in the development phase and restrict its applica-
tion in various domains. These limitations include a restricted detection range, bulk 
analysis with precise molecular features, a lack of chromatographic methods for 
better resolution, and the high cost of analytical devices such as mass spectrometers 
and NMR. However, despite these constraints, metabolomics continues to be a valu-
able research tool in translational biology, pharmacological medicine, biomarker 
discovery, and diagnosis. By analyzing the metabolic profiles of patients with dif-
ferent diseases, researchers can gain insights into the underlying mechanisms and 
identify potential targets for therapy. Furthermore, it has tremendous potential to 
monitor disease progression and treatment response and detect the side effects of 
therapies. Besides, the broad range of metabolomics is enabling research in other 
areas such as agriculture, environmental surveillance, and nutritional biology.

In the coming years, advancements in basic research and healthcare technologies 
are expected to surpass our current understanding of living organisms. Metabolomics 
is one such field that holds great promise. Therefore, in this chapter, we aim to pro-
vide an overview of the future perspectives of metabolomics in various areas, 
including precision medicine, personalized nutrition, disease diagnosis, biomarker 
discovery, single-cell metabolism, the development of novel AI-/ML-based tools for 
data integration, applications in translational biology, and therapeutic development. 
Additionally, we will touch upon the topic of metabolic sensors and wearables for 
disease surveillance. Finally, we have provided recommendations to consider while 
developing new technologies using metabolomics results. Overall, the future of 
metabolomics looks bright, with the potential to revolutionize our understanding of 
biological processes and identify new strategies for enhancing human welfare.

2  Metabolomics for the Masses

While the field of metabolomics has many applications in a clinical setting, there is 
also a clear use for bringing metabolomics into everyday life. Technologies such as 
pregnancy tests, breathalyzers, and blood glucose monitors are familiar examples of 
tools implemented for simple readouts of our physiological state from biomolecular 
readouts. However, these technologies are only designed for the detection of single 
molecules: pregnancy tests detect human chorionic gonadotropin (hCG) in urine, 
breathalyzer tests measure alcohol levels from a breath,1 and blood glucose moni-
tors measure instantaneous plasma glucose levels. While these narrow searches for 

1 Breathalyzer tests have also been designed for diagnosis of viral and bacterial infections through 
volatile organic compound detection. Secondary electrospray ionization-mass spectrometry 
(SESI-MS) on mouse breath could detect infection as well as distinguish between different patho-
gens and strains [6], and a diagnostic breath test using gas chromatography-mass spectrometry 
(GC-MS) was approved for emergency use in the Covid-19 pandemic [7, 8].
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specific molecules achieve the designed task, the conclusions that can be drawn 
using these technologies are equally as narrow.

Recently, there has been an emergence of consumer products that expand bio-
molecule detection through large metabolomic analyses to provide wider insights 
into our physiological state. The promise of these products includes early disease 
detection, lifestyle recommendations to improve metabolic health, and future health 
outcome predictions, all without the need to visit a doctor’s office. While consumer 
products may bring metabolomics closer to everyday life, many challenges still 
need to be addressed to scale up these analyses.

2.1  Physiological Assessment Through Endogenous Molecules

The accessibility of high-throughput metabolomics has grown, and therefore asso-
ciations between individual, endogenously derived metabolites and physiological 
states have become easier to identify [9]. These findings can be leveraged for infer-
ence on a new individual’s physiology. However, high-throughput metabolomics on 
the same biological source must be used for the inference to be accurate.

Biofluids commonly used for such analyses are blood (either plasma or serum 
[10]), saliva, and urine [11]. While the latter two fluids are the easiest to obtain 
noninvasively, saliva is highly affected by external factors such as hygiene and food 
intake, and urine is a waste product, meaning its metabolic contents will heavily 
represent molecules being excreted rather than those being actively used [12]. Blood 
is therefore the fluid most reflective of bodily processes. Blood circulates in all 
organs and tissues, making it a “reasonably good metabolic proxy for the entire 
organism” [13]. As such, businesses building analytical pipelines to bring metabo-
lomics to the masses have opted for blood draw devices to collect samples for fur-
ther analysis.

Reflecting the methods of published metabolomics-disease associations again, 
blood is then profiled through liquid chromatography-mass spectrometry (LC-MS) 
methods, and the resulting spectra are mined for known physiological and disease 
biomarkers. From plasma draws, there are ways to discern the general function of 
our organs as each has a unique metabolomic footprint. Organs consume and excrete 
different metabolites, such as the liver’s production of bile acids, the thyroid’s pro-
duction of thyroxine, or the adrenal glands’ production of epinephrine and cortisol 
[13]. Such unique metabolomic footprints allow health-based conclusions to be 
drawn per organ from metabolomics analysis on a plasma sample.

There have been numerous studies identifying metabolites as biomarkers for 
non-organ-derived disease as well [14–16]. While such studies have faced criticism 
due to low sample size and statistical power [17], a 2021 study from Pietzner et al. 
established robust metabolomic effects in a population of just under 12,000 indi-
viduals [9]. Associations were found between both identified and unidentified 
metabolites and metabolic, heart, and lung diseases, as well as an array of cancer 
types. The detection of abnormally high or low levels of these metabolites in an 
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individual’s blood could potentially lead to the early detection of disease. This pros-
pect is what drives the establishment of metabolomics tools for the masses – with a 
single blood draw, a person could discover potentially life-saving information and 
seek intervention much earlier than they would with classical screening techniques. 
However, this promise has yet to be realized, and only time will tell if the masses are 
willing to participate in and act on metabolomics-based health insights.

2.2  Limitations of Current Technologies

2.2.1  Exogenous Molecule Identification

Beyond endogenous compounds, exogenous compounds that enter the body through 
the environment can also provide insight into the disease state, as discussed in chap-
ter “Exploring Ecometabolomics Landscapes: Progress, Applications, Challenges, 
and Future Recommendations”. In fact, most complex human diseases, from cancer 
to cardiovascular disease, can be attributed to the environment and the interplay 
between an individual’s genes and their environment [18, 19]. Unfortunately, these 
environmentally derived compounds, collectively known as our exposome, come 
from a vastly larger pool of chemicals than endogenous metabolites, and only a 
small fraction of these are known and have been measured in human tissues [20].

To make matters worse, the exposome is spatiotemporally dependent, meaning 
exogenous molecules in the blood will depend on the location and time of biofluid 
collection. Additionally, the physiological response to these molecules varies widely 
between individuals [21]. This, along with the only very recent development of 
high-throughput exposure data collection and experimental pipelines, means the 
number of known associations between exogenous molecules and disease lags 
behind those of endogenous molecules [22, 23]. The exposome contains contami-
nants, toxins, pollutants, and carcinogens, all molecules with potentially serious 
consequences to human health. Due to the aforementioned technological difficul-
ties, potential exogenous biomarkers for disease will be missed with current tools. 
Therefore, technologies for exposome data collection, identification, and quantifica-
tion are needed to bring the further benefit of metabolomics to the masses.

2.2.2  Commercial Affordability and Interest

Full metabolomics screens are not currently available as a part of everyday health-
care, and therefore access by individuals to their full metabolomics profiles must 
come from a direct-to-consumer business. From a commercial perspective, to pro-
vide helpful metabolomics-derived information to the masses, the masses must 
want, and therefore pay for, their metabolomics readouts. However, a viable busi-
ness model for a direct-to-consumer metabolomics product has yet to emerge. The 
multi-omics profiling company Arivale shut its doors in 2019, four years after its 
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founding, due to an inability to fund its consumer-based scientific wellness program 
which included genome, metabolome, and microbiome profiling [24]. Beyond the 
high technological costs, CEO Clayton Lewis also cited the high costs of customer 
acquisition and a lack of interest in this data as a regular part of healthcare [25]. 
While competitors have either lowered consumer costs or made licensing agree-
ments with large healthcare companies that could make molecular profiling more 
widespread, the future availability of metabolomics for the masses is going to 
depend on translational utility and the willingness of the masses to independently 
invest in health insights derived from metabolomics data [26].

3  Future Opportunities and Challenges 
in Translational Metabolomics

The emerging focus of personalized medicine is greatly due to the explosion of 
omics data: genomics, transcriptomics, proteomics, metabolomics, etc. While boun-
tiful research has shown the potential for biomarker detection, disease subtyping, 
drug repurposing and discovery, and other useful applications for patient care, the 
development of widespread healthcare tools has not followed suit equally for each 
type of omics data. Genomics has dominated clinical implementation, with more 
than 75,000 genetic tests available by 2017 [27]. On the contrary, 2 years later in 
2019, transcriptomics and proteomics were the basis for only five assays and one 
assay, respectively [28], in a clinical setting. Even more astounding, metabolomics 
is still without an FDA-approved test in 2023 [29]. While there are no current clini-
cal tools for metabolomics, there are many areas in healthcare research conducting 
extensive experiments that can benefit from their development.

Numerous branches of medicine have recognized metabolomics as a potential 
strategy to identify predictive, diagnostic, or prognostic markers of disease. 
Oncology has already made strides in this respect, as the ability to find metabolite 
biomarkers in serum and image-based applications has been explored. In breast 
cancer patients, the metabolome is representative of over 30 endogenous metabo-
lites, characteristic of low glucose, low glycerophosphocholine, and increased tCho 
levels [30]. The mapping of metabolic signatures has been conducted for additional 
cancers including ovarian [31], lung [32], and endometrial [33]. In addition, the 
detection of breast cancer tissue from noninvolved adjacent tissue using metabolo-
mics with simultaneous measurement of tumor size, lymph node status, hormone 
status, and histology was determined with accuracy, sensitivity, and specificity all 
around 90% [34]. As an increasing number of studies are performed to validate 
existing and discover new biomarkers of disease, the chemical fingerprint of the 
phenotype may become increasingly specific. In addition to diagnostic usage, 
metabolomics has been used to predict treatment outcomes, such as sensitivity and 
resistance of either chemotherapy- or hormonal therapy-treated samples of human 
glioma cell cultures [35]. This study demonstrates the ability to create diagnostic 
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tools using metabolomics that are detectable before changes in phenotype are evi-
dent using conventional imaging techniques [36].

Type 2 diabetes and other diseases under the umbrella of endocrinology have 
bountiful potential for metabolomic techniques to aide in our understanding of their 
etiology. Due to the current global type 2 diabetes epidemic and its worrying projec-
tions, a large focus has been placed on developing diagnostic biomarkers. An exam-
ple of type 2 diabetes-associated metabolite, 2-aminoadipic acid, was reported by 
Wang et al. [37]. Using the Framingham Heart Study, 2-aminoadipic acid was dis-
covered to be increased in diseased individuals up to 12 years before onset, and was 
not well correlated with other metabolites, suggesting a distinct metabolic pathway 
for risk assessment of phenotype outcome. As the nature vs nurture debate contin-
ues in the diabetes field, it has been demonstrated that metabolic markers are more 
predictive of type 2 diabetes development than genome-wide association studies or 
other genetic data [28]. This proposes a greater environmental role for disease onset, 
suggesting lifestyle changes are a viable solution. In rheumatology, 20 metabolites 
have been identified to decently discriminate rheumatoid arthritis from ankylosing 
spondylitis, Behcet’s disease, and gout with an area under the receiver operating 
characteristic curve (AUC) of 0.812 [38]. As additional metabolomics studies tar-
geting the classification between two groups are conducted with larger sample sizes, 
the validation and refinement of metabolic profiles associated with specific diseases 
will be attainable.

In neurological disorders, such as Alzheimer’s disease (AD) and Parkinson’s dis-
ease, the quest for metabolic biomarkers for early diagnosis and subtyping is of 
interest to many. As early AD diagnosis and AD treatment have had very limited 
success, metabolomics may provide novel insights into the underlying mechanisms 
driving AD development and progression. Metabolomics of plasma samples from 
AD cases compared with controls identified a higher abundance of free cholesterol 
in small HDL associated with a lower risk of AD and higher levels of glutamine 
associated with increased AD risk [39]. Additional metabolites were discovered to 
be correlated with general cognition. These results demonstrate potential biomark-
ers for further study which could be indicative of AD development and cognitive 
decline. If these metabolites are valid, it may be possible to create tools to aid in the 
diagnosis of AD and other cognition-centered conditions. In addition to biomarker 
detection in neurological disease, the stratification between patients with Parkinson’s 
disease versus controls, and Parkinson’s with dementia versus Parkinson’s without 
dementia, has been demonstrated by Han et  al. with AUC of 0.955 and 0.862, 
respectively [40]. The ability to distinguish between neurodegenerative stages pro-
vides a clinical application for diagnosing disease severity and necessary treatment.

A pediatric study focusing on the volatile organic compound (VOC) abundance 
for children with and without asthma has concluded an 80–100% accuracy of diag-
nosis with a combination of VOCs [41]. While still in its infancy, further focus on 
VOCs may lead to better risk assessment for identifying children with the greatest 
risk of adverse events. The metabolic profile of cardiovascular disease has shown 
promise for the discovery of new biomarkers for the diagnosis of heart-related 
adverse events. A significant increase in the discrimination between 150 individuals 
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developing atherosclerosis and 1445 not developing atherosclerosis between a 
6-year time interval resulted when low-density lipoprotein (LDL) cholesterol, high- 
density lipoprotein (HDL), docosahexaenoic acid, and tyrosine were added to tradi-
tional biomarkers [42]. This conclusion demonstrates the capability of metabolites 
to assist in the predictive power of traditional diagnostic methods.

As the metabolome is composed of thousands of compounds, there is a high 
potential for the discovery of metabolites indicative of early detection for many 
diseases. Vallejo et al. revealed perfect separation between plasma samples from 
patients with atherosclerosis and controls, and patients with acute coronary syn-
drome and controls, using gas chromatography-mass spectrometry [43]. This sug-
gests a metabolite-specific assay could be created to confidently identify patients 
with these heart problems. Heart failure patients and controls have been demon-
strated to be separable based on the measurement of pseudouridine, 2-oxoglutarate, 
2-hydroxy 2-methyl propanoic acid, erythritol, and 2,4,6-trihydroxy pyrimidine 
[44]. This research concluded that there are novel metabolic biomarkers of heart 
failure which can be further investigated to discover their potential to be used in 
prognosis.

Taken together, metabolomics has been utilized for many applications in a wide 
variety of medical fields. A list of metabolite biomarkers for use as diagnostics is 
located on the Mayo Clinic website (https://www.mayocliniclabs.com/) [28]. As the 
deployment of metabolomics continues to offer promising results with respect to the 
identification of novel predictive, diagnostic, and prognostic biomarkers that aid in 
the overall understanding of the biological mechanisms underlying a phenotype, 
new studies will result in the precise identification and refinement of a metabolic 
fingerprint of many diseases, which can be measured to make clinical assessments.

As interest in metabolomics increases in research, industrial efforts are aiding in 
the future translational capability by focusing on the creation of simpler and better 
LC-MS/MS systems [28]. Both Sciex and Waters have created instruments for use 
in clinical laboratories. In addition, enzyme-linked immunosorbent assay (ELISA) 
is a method by which targeted metabolites can be quantified for clinical use, although 
there are still limitations with this approach that need to be addressed [45]. Also, as 
the use of mobile device data and wearable data rapidly grows, metabolomic mea-
surements can accompany these sources to create a foundation for the metabolome 
of both diseased and healthy individuals on a massive scale. The influx of this data 
may be used to create personalized recommendations for numerous applications 
including exercise and nutrition.

As mentioned earlier, diseases such as type 2 diabetes have been suggested to be 
driven, on average, more by environmental than by genetic components. Therefore, 
the culmination of multiple modalities of data for a large population could lead to 
the identification of necessary lifestyle requirements for the prevention of disease 
development. Nutritional metabolomics focuses on how chronic or acute food 
intake causes a response in an organism’s metabolism [46]. Research involving 
medical foods and dietary supplements has shown promise as a solution to treat 
many inborn errors of metabolism, dietary deficiency diseases (such as rickets, 
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scurvy, and goiter), and other medical conditions such as coeliac disease (through 
gluten-free diets) and epilepsy (through ketogenic diets) [47].

Although cancer prevention guidelines have stated the association between the 
consumption of red meat, processed meat, and sugary drinks with the development 
of cancer, these products are still overeaten by some of the US population. Research 
focused on the resulting metabolic changes may aid in the discovery of direct mech-
anisms responsible for the correlation between these foods and drinks and cancer. 
As with smoking, as the evidence amounts to and becomes popularized, an incen-
tive for the government to intervene and create a policy limiting the ability of the 
population to consume these harmful products may be implemented. As more stud-
ies are conducted with a focus on medicinal food, an additional application may be 
the incorporation of a supplemented diet in addition to standard treatment in health-
care. As nutrition influences overall well-being, the potential of precision nutrition 
to create a healthier population has an enormous beneficial consequence and may 
promise a large market as technological advances demonstrate a positive impact.

Personalized medicine, drug discovery, and minimization of risk for blood con-
tamination are potential candidates for translational use of metabolomics. 
Laboratory-developed tests (LDTs) are defined by the FDA as “in vitro diagnostic 
tests that are manufactured by and used within a single laboratory,” which can mea-
sure either individual or multiple analytes [29]. Abnormalities in metabolic path-
ways and biomarkers unable to be detected by other means are measured by 
Metabolon’s Meta UDx™ test. For hereditary metabolic disorders, the diagnostic 
tests Meta IMD™ and Meta IMD™ + (Plus) were developed. Although not approved 
by the FDA, these LDTs may provide information for new tests that can be used in 
the clinic to gain more information about a patient than the current standard of care.

With the development of the chemical fingerprints of metabolic changes result-
ing from disease development, tailored recommendations can guide treatment of an 
individual given the metabotype of the patient [28]. There are many opportunities to 
expand metabolomics in the future to new sources, such as cerebrospinal fluid, 
human saliva, bronchoalveolar lavage, sweat, feces, semen, and amniotic fluid [48]. 
These studies will provide answers to current questions in multiple healthcare fields 
and may lead to the ability to investigate new topics. Also, by comparing metabolite 
abundance before and after drug treatment and studying the resulting phenotype, 
insight to the mechanistic impacts of drugs can be elucidated. This could also guide 
drug developers to create more effective therapeutics, as direct experimental evi-
dence would provide a more comprehensive understanding of the drug mecha-
nism [49].

Additionally, a treatment’s level of toxicity may be confidently measured by 
metabolomics, aiding in the development of optimal medications for a patient and 
also providing an avenue for the creation of predictive modeling of drug toxicity for 
the creation of new therapeutics [50]. Bacterial problems arising from contamina-
tion and antibiotic resistance may be solved through the study of metabolism. As 
pathogens can be transmitted by human blood and blood-derived products, metabo-
lomics may be a tool to minimize or eradicate this risk due to its sensitivity of mea-
surement through clinical screening [48]. Also, the rise in antimicrobial resistance 
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due to antibiotic use could be alleviated by the determination of metabolomic bio-
markers of resistance and the creation of methods for metabolic changes that can 
kill the bacteria. The implementation of these tools in healthcare could prevent the 
spread of resistant bacteria and save many lives in the future.

Although there are an impressive number of applications for translational metab-
olomics, there are numerous challenges that must be overcome to create valid, pre-
cise techniques for analyzing patient samples. Many logistical challenges provide 
impediments to an optimal workflow for the utilization of metabolomics in the 
clinic. As a relatively recent approach to omics technologies, its publicity is much 
less than others and often clouded by the successes more advanced omics have 
achieved [51]. One bottleneck is the high cost of the instruments needed to measure 
the samples and the laborious sample preparation methodologies [36]. The resources 
and armamentarium needed to store and measure metabolites before they undergo 
transformation and/or degradation may not be available at many healthcare institu-
tions and must be purchased to allow for metabolomic analyses to be made possible 
[51]. As trends in other omics have shown decreased time and cost for the genera-
tion of data [52], it is possible that as new measurement techniques are developed, 
economic and temporal barriers will be less of a factor. An additional issue is a 
current need for the culmination of experts in different research areas including 
biologists, analytical chemists, statisticians, data scientists, and bioinformaticians to 
successfully conduct and interpret a metabolomics-based experiment in its entirety 
[28]. The reason for this is that the data output from traditional metabolomics plat-
forms is rich and complex.

To be used in clinical settings, the number of metabolites must be reduced greatly 
for a clear interpretation of the results, thus making a risk assessment, diagnosis, 
and prognosis easier for the clinician. To select biomarkers for use in healthcare 
from large metabolomic datasets, there is a need for a user-friendly platform that 
can process, statistically interpret, and determine straightforward conclusions about 
data, demonstrating the direct effect of a change in phenotype on the metabolome. 
The market will also drive the availability of clinical tests. To make a product com-
mercially viable, it must be profitable, which will depend on an estimate of how 
many people will use it [28]. To increase the probability of incorporating new tech-
nology in healthcare, researchers can work with industrial organizations to develop 
easy-to-use, clinician-approved tools.

Numerous technical aspects of metabolomics need to be overcome to create reli-
able metabolite biomarkers for unique metabotyping of disease. One major obstacle 
for untargeted metabolomics is overcoming its semiquantitative nature. As data 
generation relies on the normalization of a signal, the definition of the normal con-
centration of metabolites is needed for reliable conclusions regarding the ability of 
a compound to be used as a biomarker of a phenotype [48]. A showcase example is 
the comparison of two studies analyzing roughly 45 total Crohn’s disease and ulcer-
ative colitis patients. One concluded that there is no discrimination using metabolo-
mics between ulcerative colitis and Crohn’s disease [53], while the other concluded 
that choline, lipoprotein, and N-acetylated glycoprotein levels were able to separate 
the conditions significantly with an AUC greater than 0.9 [54].
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Due to the wide range of biological variation in the metabolome, different cohorts 
may exhibit wide-ranging metabolic profiles. Therefore, absolute quantification of 
metabolite concentration is necessary for accurate benchmarking [28]. To ensure 
bias is not impacting the results of benchmarking experiments, validation needs to 
be repeated in multiple populations with large sample sizes. Currently, many bio-
markers determined through metabolomics are results from studies limited in valid-
ity, statistical robustness, and experimental design [48]. Quantification coupled with 
repeated validation must be performed to develop an understanding of the true met-
abolic pathway alterations characteristic of a disease. Another major challenge to 
translational metabolomics is the inability to identify metabolites and the difficulty 
of pathway mapping [28]. There are many metabolites unavailable for measurement 
in commercial products and/or cannot be identified using current spectral libraries 
such as METLIN or mzCloud. Thus, current methods lack the complete metabo-
lome as a whole. An extension of this is the inability to identify metabolic pathways 
perturbed by a disease, hindering the potential use of metabolomics for the proper 
determination of changing biological mechanisms, biomarker identification, and 
therapeutic development.

The future of translational metabolomics is contingent on the creation of stan-
dardized protocols for experimental design and measurement, simplification of data 
analysis and results, and the development of robust quantization methods leading to 
the reliable identification of metabolites. As groups such as the Metabolomics 
Standards Initiative (MSI) continue to meet and perfect the current procedures in 
metabolomic analysis, metabolomics continually progresses toward translational 
applications. Still, in its infancy, numerous unanswered questions in biology will be 
elucidated by metabolomics as it develops and its utilization increases, making it 
one of the most exciting technologies of the present. There is an enormous opportu-
nity for the study of the metabolome to influence global healthcare.

4   Metabolomics as a tool to Accelerate Therapeutics 
and Novel Drug Discoveries

To enable capturing of the diverse array of metabolites and their dynamic cellular 
concentrations, the detection of these molecules is primarily based on two technolo-
gies, namely, nuclear magnetic resonance (NMR) spectroscopy (1H or 13C) and 
mass spectrometry (MS). Mass spectrometry is often coupled with capillary electro-
phoresis (CE-MS), gas chromatography (GC-MS), gas chromatography-flame ion-
ization detection (GC-FID), direct infusion-mass spectrometry (DI-MS), or liquid 
chromatography (LC-MS). Due to the large chemical diversity and limited knowl-
edge on metabolism despite the implementation of these technologies coupled with 
a range of analytical methods, less than 5% of the metabolome is annotated [55].

As discussed in previous chapters, there are primarily two approaches for inves-
tigating the metabolome, i.e., targeted and global approach (also referred to as 
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non- targeted). The former refers to the identification and measurement of the well-
defined groups of chemically characterized metabolites that have been biochemi-
cally annotated as well using appropriate internal standards. Measurement is 
quantitative, and metabolite concentrations are expressed in molar units. This 
approach enables studying novel associations between the metabolites under vari-
able physiological conditions [56]. Owing to the high sensitivity of this approach, it 
is often used for studying the flux metabolic pathways and for the detection of well-
defined chemical compounds or validation of known biomarkers [57, 58]. 
Alternatively, the untargeted approach provides opportunities for comprehensive 
data analysis as it is possible to detect all measurable compounds or analytes within 
a given sample including putative annotated metabolites or chemically unknown 
samples. Due to this variability in detection, the data is examined in a semiquantita-
tive or relative manner using multivariate analysis, wherein the extensive dataset is 
divided into smaller datasets of manageable signals. Owing to the relative quantifi-
cation of the readouts as chromatographic peak areas, the data generally is expressed 
in terms of the intensity of ions or arbitrary units [56–59].

Moreover, these peak areas are determined by the experimental conditions under 
which the detection is performed using NMR, GC-MS, or liquid chromatography 
coupled to high-resolution mass spectrometry (LC-HRMS). Therefore, these varia-
tions make it difficult to directly compare the data from experiments done at differ-
ent time points within the same laboratory or by different laboratories. The current 
challenges associated with the non-targeted approach include the nonavailability of 
standardized workflows primarily for data generation, complexity of signatures 
detected, lower sensitivity of detection owing to lower abundance, identification of 
metabolites (only a small proportion of metabolites and their annotated features are 
known), automated processing of data through feature detection and integration 
with other omics data, and finally the availability of only limited well-defined 
interoperability frameworks. Moreover, the current platforms for detection and 
analysis are highly expensive. Therefore, these together lead to nonoptimal reuse or 
interoperability of the data. Additionally, the identification of medically important 
molecular signatures and the demand for participatory medicine will also impact the 
establishment of methodologies for simplifying the complex data and accelerating 
research in the field, and will subsequently catalyze the development of affordable 
and accessible alternative analytical methods for the nonspecialized end users [11, 
60]. Currently, the non-targeted approach is being used for the discovery of 
biomarkers.

There are multifaceted applications of metabolomics in various fields of biology 
[61]. For example, in environmental research, it is being used for addressing eco-
toxicological issues [62], and in plant biology and agricultural science, it is being 
used for understanding cellular functions and discovering biomarkers, for diagnos-
tics and phenotyping (specific metabolites and quantitative trait loci (mQTL) & 
metabolic genome-wide association studies (mGWAS)), and for predicting the 
metabolite-genome correlations [63, 64]. The current applications of metabolomics 
have also expanded to microbiome research [65–68]; animal health [69–71]; human 
healthcare including toxicology [72], epidemiology [73], cancer biology [36, 74, 
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75], cardiovascular diseases [36, 76], gastrointestinal diseases, [36, 77–79], aging 
research [80], and infectious diseases [81–83]; and nutrimetabolomics [83–85]. 
Toward biomedical research, metabolomics has furthered systems biology and sys-
tems medicine which has paved a pathway for personalized medicine (also referred 
to as precision medicine).

Personalized medicine or precision medicine is aimed at developing both disease 
prevention and clinical care strategies that account for variability in individuals that 
is affected by their environment, genetics, lifestyle, and molecular phenotype (deter-
mined by both genotype & metabolome) [60, 86]. It follows the concept of “P4 
medicine,” i.e., preventive, predictive, personalized, and participatory [87] in nature. 
The approach relies on the characterization of genetic, epigenetic, and clinical 
information of individuals and provides adept tailored medical treatment, which 
will consequently be safe and effective. As a trickle-down effect, it may enable 
reducing time and financial expenditure on healthcare, improve quality of life, and 
reduce side effects of the given treatment. Personalized medicine may have several 
implications including early detection of disease using medically relevant biomark-
ers and identification of key genetic and epigenetic parameters during the initiation 
and progression of the disease [60, 86, 88]. Overall, it is promising in providing 
deeper insights into the mechanism of disease emergence and progression and facil-
itates using noninvasive methods and easy-to-obtain clinical samples like body flu-
ids (blood, sweat, urine, etc.) or volatile breath components for diagnostic purposes 
and stratifying disease propensity. Consequently, it is promising in laying a founda-
tion for pharmacogenomics and targeted drug discovery, thereby enabling the mea-
surement of well-being.

Medical decision-making is based on the examination of biochemical parame-
ters, clinical assays, imaging scans, and rarely genetic markers. The drugs used 
either for treatment or for the drug discovery process are based on cellular proteins, 
for example, enzymes, receptors, transporters, etc. Thus, comprehensive measure-
ment of metabolites generated through this process may provide deeper insights 
[89]. Moreover, these metabolic signatures have started to emerge as new biomark-
ers for diseases and for responding to treatment [90–109]. Furthermore, the discov-
ery of new biomarkers can also be based on the co-metabolism of the gut microbiome 
along with that in humans, which have shown to modulate the levels of drugs in the 
blood and their effects, i.e., altering their pharmacokinetic (PK) profiles. Thus, these 
may be useful signatures for PK studies and PK modeling studies [110].

Toward the implementation of personalized medicine, research in pharmacome-
tabolomics has accelerated in the last decade. It is aimed at the identification of the 
detailed biochemical roadmap to facilitate understanding intraindividual heteroge-
neity for a given disease (especially for depression and cardiovascular disorders) 
and their variation in response to drug treatment [98, 100, 102, 106, 111–115]. It has 
been also shown that urinary drug metabolite profile before treatment or at baseline 
can inform about the metabolism of the drugs and their toxicity [116]. One of the 
key initiatives has been funded by the National Institutes of Health (NIH) through 
the Pharmacometabolomics Research Network (PMRN) (http://pharmacometabo-
lomics.duhs.duke.edu/) in partnership with the Pharmacogenomics Research 
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Network (PGRN; https://www.pgrn.org/) [89]. Studies from the same have shown 
that a patient’s genetic and metabolic data alone or their combinations are crucial in 
informing the treatment outcomes as well as the underlying cause for their variation 
in response to treatment including the contribution of ethnicity, sex, etc. [117].

Other studies have demonstrated that metabolomics can effectively complement 
genomics data for assessing the risk of a given disease and for its monitoring and 
management to enable precision care [118]. This has led to the emergence of 
pharmacometabolomics- informed pharmacogenomics for addressing various dis-
eases [100], wherein metabolic profiles are analyzed and further linked to the clini-
cal phenotypic manifestations and with relevant genetic variants (single nucleotide 
polymorphisms (SNPs)) to enable the identification of novel genetic variants or 
SNPs that are associated with these varied drug response phenotypes [115]. 
Moreover, this approach seems to be useful, especially in the case of complex dis-
eases, where similar phenotypes may arise owing to pathophysiologic processes and 
information from genomics data is not sufficient [115].

The upscaling of data generated in clinical pharmacology and the integration of 
knowledge from systems biology have led to the emergence of quantitative and 
systems pharmacology (QSP) [119]. This was led by the National Institute of 
General Medical Sciences (NIGMS) with the engagement of domain experts in 
pharmacology, systems biology, pharmacokinetics/pharmacodynamics, and com-
puter modeling. QSP is enriched by data from both pharmacometabolomics and 
pharmacogenomics datasets [89, 115]. Owing to the low success rate of the drugs 
that progress from preclinical to first in human studies, the data from QSP is based 
on an understanding of biological pathways, disease progression, and drug mecha-
nisms. This feeds into informing this translation that is critical for pharmaceutical 
R&D [119]. Thus, the combination of information from the metabolic and genetic 
markers can be used as unique identifiers for novel biomarker discovery.

Thus, metabolomics and the recent tools being developed are crucial in facilitat-
ing the identification of diseases through unique metabolic fingerprints or signa-
tures. The culmination of this information with genomic data will contribute to 
novel biomarker discovery. Besides, the examination of clinical characteristics and 
their variability will enable patient stratification for informing personalized drug 
treatment and inform clinical trial designs including their inclusion criteria. 
Additionally, the clinical characterization may enable the identification of new path-
ways for therapeutic discovery as well as provide novel insights into mechanisms of 
drug actions. This will provide scope for enhancing treatment outcomes by integra-
tion of the metabolomics data with fluxomics. Advanced methodologies and the 
integration of omics data along with computational methods and systems biology 
may enable higher success rates critical in drug discovery, development, and trans-
lation. Moreover, a comparative analysis of the metabolome under baseline versus 
the treatment and environmental variations (including knowledge of host gut micro-
biome) would further provide confirmatory results for the success of personalized 
medicine or treatment.
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5  AI-/ML-Based Approaches for Metabolomics Data Mining 
and Analysis

Machine learning (ML) and deep learning (DL) applications encompass everyday 
life, including product recommendations, spam filtering, language translation, and 
even customer service chatbots. The artificial intelligence revolution has gained 
considerable interest in healthcare, and its implementation of omics data is evident 
from a multitude of studies [120–122]. However, metabolomics analysis pipelines 
are much less developed than other omics, such as genomics and transcriptomics, 
which have a plethora of validated databases and tools at their disposal [123, 124]. 
While many challenges need to be overcome in the field of computational metabo-
lomics, numerous applications of ML and DL are working toward solutions. In 
addition, research has already begun to reveal the utility of ML and DL using 
metabolomics, and future work has the potential to transform our understanding of 
health and nature.

Two similar issues facing metabolite measurements are the inability to annotate 
metabolites and the misidentification of similar metabolites from the raw spectral 
data output by the mass spectrometer. The study of the entire metabolome is ongo-
ing, and there are many databases with metabolomic information (https://metabolo-
micsna.org/index.php/resources/databases). However, a majority of small 
compounds have not yet been added to the databases. This leads researchers to a 
dilemma, and the following questions are inevitable: Does one throw away metabo-
lites unable to be annotated given current databases to increase statistical power for 
identifiable metabolites? Alternatively, does one include all metabolites and keep 
them as m/z ratios when reporting results, discussing the need for unidentifiable 
compounds to be found in future analyses? Regardless of the researcher’s decision, 
valid identification of metabolites is paramount to the ability to interpret the find-
ings and create diagnostic tools.

By employing ML and DL, researchers are devising different strategies to 
increase the robustness of metabolomic annotations. D.D.  Matyushin, 
A.Y. Sholokhova, and A.K. Buryak created a deep convolutional neural network 
(CNN) to rank small molecules for identification using low-resolution electron ion-
ization mass spectrometry (EI-MS) [125]. This model used the NIST 17 database to 
train the CNN, and the validation sets were the Golm Metabolome Database, Human 
Metabolome Database, and FiehnLib. The CNN outperformed other methods in 
ranking the metabolites. This work demonstrates the superiority of DL approaches 
over other methods for this specific case of metabolite identification. Multiple 
reviews mention convolutional neural networks developed to automate the peak- 
picking process [126, 127]. Kantz et al. created a CNN which removed about 90% 
of false positives from a conventional peak-picking pipeline [128]. By precisely 
identifying true metabolites in noisy mass spec data, robust biological findings can 
be more readily discovered. Lauren M. Petrick and Noam Shomron discuss multiple 
ML and DL models for peak picking, including ML models WiPP and MetaClean, 
and DL models Peakonly, NeatMS, NPFimg, and Eva [129]. However, some of 
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these models were developed to work best for specific types of peaks and therefore 
may not be generalizable to all analyses. Nevertheless, the DL model Eva obtained 
a classification accuracy for good and bad peak shapes greater than 90% when 
applied to 22 publicly available LC-MS metabolomics datasets. This result is very 
promising and shows the power of DL when large datasets have culminated. 
Additional models have been developed to predict the absence of a mass spectrum 
in a database [130, 131]. This type of analysis allows for enhanced sensitivity of 
metabolite annotation, as only matched metabolites are kept for further analysis. If 
researchers are only interested in the metabolites that are already annotated, there 
will be widespread use of these tools and their successors. It is possible that attri-
butes from all these strategies using ML and DL will be combined to create a robust 
metabolomic analysis preprocessing pipeline.

One area of enormous potential that metabolomic analyses using ML and DL 
have already impacted is the safety and optimization of food. Wang et al. created a 
deep artificial neural network (ANN) to classify pathogenic and nonpathogenic 
microbes commonly found in food [132]. Although the plot of the linear dimension-
ality reduction PCA showed overlap between different microbes, the ANN was able 
to discriminate all microbe types in a model using only metabolite signals that 
increase during the incubation time with an accuracy of 99.2% [132]. Through the 
screening of microbes in food, it is possible to greatly reduce the risk of illness due 
to the large-scale distribution of infected food. Asakura et al. performed metabolo-
mic profiling on eight fish species and, using an ensemble deep neural network, 
revealed that there were metabolites that correlated with fish size [133]. This study 
demonstrates the potential to engineer animals with desired traits using the metabo-
lomic composition as biomarkers. Therefore, future applications using other ani-
mals could reshape current farming techniques and increase food supply.

Healthcare diagnoses and biomarker discovery using ML and DL with metabo-
lomic data have the potential to revolutionize healthcare standards. A widely cited 
study of DL using metabolomics was conducted by Alakwaa et al. [134]. One DL 
and six ML models were fit to ER+ and ER- breast cancer tissue metabolites. The 
DL model significantly outperformed the ML models, achieving an area under the 
receiver operating characteristic curve of 0.93. It also identified important metabo-
lites for separation of ER+ and ER- samples which were not identified by the ML 
algorithms, signifying DL’s superiority to find more complex relationships within 
the data. The tumor microenvironment is a topic of increasing interest. Metabolomic 
sampling can provide a snapshot of the small compounds in contact with a patient’s 
tumor. As databases become larger, it may be possible to identify better diagnostic 
markers of cancer and develop personalized therapies specific to cancer 
progression.

Breast cancer is one of the many phenotypes in which researchers have used ML 
or DL approaches with metabolomics data to classify samples by group. This type 
of research has already been conducted in tuberculosis [135], preterm delivery 
[136], colorectal cancer [137], influenza [138], renal cancer [139], acute myocardial 
ischemia diagnosis [140], systemic lupus erythematosus [141], NAFLD [142], 
Covid-19 [143], and depression [144]. Many of these analyses follow a similar 
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format such that metabolites from the optimal ML or DL approach which are most 
influential to the discrimination of the groups studied are validated by conducting 
literature searches for previous work correlating the metabolites with the disease. 
Proper use of ML and DL with sufficient sample sizes can produce powerful results 
because they quantify the extent to which potential sets of metabolites can be used 
as diagnostic markers of disease. After repeated validation using multiple datasets, 
diagnostic tools should be developed and deployed to better stratify risk for patients, 
and tailored treatments should be designed to provide patients with optimal recovery.

While the potential benefit of DL and ML using metabolomic data in the future 
is compelling, there are challenges that the field must overcome to advance to its 
greatest potential. As in all omics data analyses, there must be a comprehensive 
understanding of the precise question being asked and how the data will be mea-
sured to answer this question. In addition, the possibility of batch effects and con-
founding due to different species, sex, etc. within samples must be considered. ML 
and DL papers should provide and discuss numerous evaluation metrics. For exam-
ple, classification problems should report area under the receiver operating charac-
teristic curve, area under the precision-recall curve, F1 score, accuracy, sensitivity, 
specificity, positive predictive value, negative predictive value, etc. to grant the 
audience a better ability to understand how the model correctly makes predictions 
and where it lacks predictive power.

One reason metabolomics has fallen behind other omics is that there are not 
large, standard benchmarking datasets for many of the analyses. Therefore, it has 
been difficult to reliably compare different DL and ML techniques for data analysis, 
making a standardized pipeline, such as DESeq2 for transcriptomics, nonexistent. A 
universal feature of DL models is the need for large amounts of data. Large studies 
with metabolomic data are not widely available and are not easy to use or lack a 
high coverage of the metabolome. While there are openly accessible data on plat-
forms such as MetaboLights and Metabolomics Workbench, the abundance matri-
ces are often not shared, resulting in time-consuming replication using the raw data. 
Without an understanding of the files necessary to process, and which tools are 
available for processing the raw data, it is extremely difficult to correctly reproduce 
the data used in the study’s analysis. A recommendation would be to require the 
abundance matrix to be added to all studies, along with any necessary metadata to 
replicate the analysis that has been performed. This would likely bring a lot of atten-
tion to the metabolomics field from bioinformaticians and computer scientists who 
are interested in applying their knowledge to a new discipline, greatly accelerating 
the advancement of new techniques, technology, and the overall use of metabolo-
mics. As an increasing attraction to the field of metabolomics continues, an already 
AI-influenced world will inevitably incorporate new metabolomic technologies that 
will contribute to a healthier, happier population.
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6  Single-Cell Metabolomics

Cells are widely recognized as the most minimal, basic units of life. In biological 
systems, cells differentiate based on genetic expression to create heterogeneous 
populations which can then intercommunicate and organize from complex struc-
tures like tissues [145]. Biological function can vary greatly across cells, and there-
fore bulk analyses of pooled cells lose the ability to discern the differential function 
of distinct populations. To avoid losing this information, single-cell omics analyses 
have become increasingly prevalent as they have the potential to detect cellular 
heterogeneity within tissues [146–148]. Single-cell omics allow for the extraction 
and measurement of biomolecules specific to individual cells, which can then be 
compared to other cells to identify discrete populations that are invisible in bulk 
analyses [149]. While single-cell transcriptomics has seen the most rapid develop-
ment of all single-cell omics technologies, there has been a push for single-cell 
proteomics and metabolomics data to make the functional connection between 
single- cell genotype and molecular phenotype [150].

6.1  Current Single-Cell Metabolomics Technologies

Probe-based mass spectrometry, also known as mass spectrometry imaging, has 
emerged as the most useful technique for biomolecular profiling in single-cell 
metabolomics. MSI can detect the levels and localization of biomolecules using a 
probe, such as an ion beam or laser, to perform in situ chemical desorption and/or 
ionization [145, 151]. By overlaying MSI probe ablation coordinates with cell 
images from the same sample slide, mass spectra can be assigned to cells in tissue 
[152]. This circumvents the need for single-cell isolation, a costly, time-consuming 
process on which single-cell transcriptomic methods heavily rely [153].

In using MSI for biological applications, the spatial resolution of the probe is 
incredibly important as cells vary greatly in scale: most eukaryotic cells are 
10–20 μm, while bacterial cells are only 1–2 μm [145]. In addition, single cells can 
contain a large variety of metabolites at very low abundances as compared to bulk 
analyses, such that ion competition among molecules could lead to the detection of 
only the most abundant metabolites in the cell. Table 1 gives an overview of current 
MSI-based techniques to perform single-cell metabolomics measurements, along 
with their resolutions, sensitivities, and current areas for development.
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Table 1 An overview of MSI-based techniques for single-cell metabolomics

Technique
Resolution 
(μm) Sensitivity(fmol) Technique description

Areas for 
development and 
application

Secondary ion 
mass 
spectrometry 
(SIMS)

0.05–200 >10–4 A primary beam of 
positive or negative ions 
is focused on a sample, 
providing energy to 
ionize molecules in its 
focus. These “secondary 
ions” are then 
accelerated into a mass 
spectrometer [154]

Primary ion impact 
energies are high 
compared to bond 
energies within the 
analytes. This leads to 
molecular 
fragmentation, which 
complicates 
downstream data 
analysis [154]
The development of 
high-lateral resolution 
SIMS (NanoSIMS) 
makes this technology 
the best for smaller 
organisms such as 
microbes, with spatial 
resolution as low as 
30 nm [155]

Matrix- 
assisted laser 
desorption/
ionization 
(MALDI)

1–25 >1 A sample is covered 
with a chemical matrix. 
A laser, generally 
ultraviolet (infrared in 
IR-MALDI), is then 
focused on a point in the 
sample. The matrix 
absorbs energy from the 
laser, causing analytes to 
be desorbed and ionized 
into the gas phase, 
which are then measured 
by a mass spectrometer 
[156]

MALDI is the most 
popular technique for 
biological application 
due to its “soft” 
ionization technique 
that reduces 
fragmentation, 
leading to 
measurements of 
biomolecules with a 
wide range of 
molecular weights 
[157]
Methods to reduce 
probe size for a higher 
resolution in MALDI 
include transmission 
geometry MALDI 
(TG-MALDI) and 
scanning microprobe 
MALDI (SMALDI, 
[145]
Methods to increase 
sensitivity of MALDI 
include MALDI-2 
which integrates laser 
post-ionization to 
ionize molecules in 
the gas phase [158]

(continued)
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Table 1 (continued)

Technique
Resolution 
(μm) Sensitivity(fmol) Technique description

Areas for 
development and 
application

Laser ablation 
electrospray 
ionization 
(LAESI)

>30 >0.6 A mid-infrared laser is 
focused on a sample. 
The resulting ablation 
plume is intercepted by 
a highly charged 
aqueous spray 
(electrospray) to 
post-ionize the ablated 
molecules, which are 
then funneled into a 
mass spectrometer [159]

LAESI allows for 
sampling in ambient 
conditions as 
compared to SIMS 
and MALDI which 
occur in a vacuum
The IR wavelengths 
used by LAESI lead 
to large probe 
diameters. To increase 
resolution, LAESI 
uses optical fiber 
(f-LAESI) for IR laser 
transmission to the 
sample surface [160]

Desorption 
electrospray 
ionization 
(DESI)

>50 >0.5 Under ambient 
conditions, an 
electrospray is aimed at 
a sample where it 
desorbs and ionizes 
analyte molecules on the 
sample surface. These 
now ionized analytes 
then travel through the 
air into a mass 
spectrometer [161]

DESI is a 
combination of 
electrospray (ESI) and 
desorption ionization
Nanospray-DESI 
(NanoDESI) uses 
capillary action to 
desorb analytes which 
improves sensitivity 
and lateral resolution 
[162]

6.2  The Future of Single-Cell Metabolomics

The past decade has shown rapid technological advancement in the realm of MSI, 
addressing concerns about spatial resolution and biomolecular sensitivity, and 
recent developments are bringing this advancement into the coming decade. 
Preliminary research has already shown alternative ionization approaches for laser 
desorption through nanostructured surfaces and stable isotope tracking to detect 
metabolite incorporation into metabolic pathways at the single-cell level [145].

Beyond the development of single-cell metabolomics technologies, their appli-
cation is inevitable. Already, the most popular of these MSI techniques, MALDI, 
has produced mass spectra on tens of thousands of cells to define subpopulations 
with distinct metabolic states in human hepatocytes [152]. The distinction of meta-
bolic differences between cell populations could impact the fields of cancer research, 
as tumors are composed of different cell types, each with cell-type-specific metabo-
lism [163, 164], and viral infection, as elucidating the cell-specific metabolic path-
ways required in viral replication could propose new therapeutic targets for antiviral 
mechanism [153]. Single-cell metabolomics is the next step in understanding 

V. Soni et al.



499

cellular diversity in complex biological organisms. With the development of these 
technologies, we will finally be able to see the genetic and phenotypic profiles of 
individual cells in tandem.2

7  Metabolic Sensors and the Future of Healthcare

The development of metabolomic-based technology is leading to a new revolution 
in healthcare. Recent research has identified metabolites whose abundances are 
indicative of changes in phenotype. For example, one group of compounds receiv-
ing focus as diagnostic markers is volatile organic compounds (VOCs). This trend 
has been accompanied by sensors engineered to quickly measure unique metabo-
lites. The combination of these advances has the potential to produce personalized 
recommendations for nutrition, early detection of disease, food desirability, and 
many other applications.

VOCs are produced by a change in normal physiology and metabolic pathways 
in disease-affected tissues of the GI tract [166]. VOCs are measured using noninva-
sive techniques and could be key elements in the early detection of many diseases. 
Electronic nose (e-nose) instruments are tools developed that can measure many 
VOCs, utilizing many different sensor arrays. GI tract diseases detected using 
e-noses include colorectal cancer, Crohn’s disease, ulcerative colitis, irritable bowel 
syndrome, and cholera [166]. The development of disease-specific e-nose devices 
has increased specificity and sensitivity. A preprint describes work by Gladding 
et al. in which they demonstrate VOC patterns of heart failure using a unique breath 
sensor that was optimized to detect acetone [167]. As acetone is an early signal of 
future heart failure, this technology provides a noninvasive, inexpensive diagnostic 
tool that can be used to assess a user’s risk. Panebianco et al. conducted a study to 
compare the results of an untargeted GC-MS approach to GC-olfactometry (GC-O), 
a faster biomarker identification, on healthy and gastrointestinal cancer patients 
[168]. Their analyses showed that GC-O identified differentially abundant odor- 
active compounds that were not discovered using the GC-MS method. The targeted 
approach of GC-O exemplifies an increased sensitivity to compounds of interest, 
resulting in the identification of more biomarker candidates. These studies illustrate 
the potential for VOCs to be used in finding metabolites that correlate with a dis-
ease, leading to the ability to create screening and early diagnosis of several diseases.

We have already incorporated wearables, such as Fitbit, into our daily lives. 
These devices have sparked an interest, and sometimes an obsession, with personal-
ized health, as consumers can continuously track some health markers. The percep-
tion of increased longevity, the ability to live a longer, healthier life, through 
personal tracking of biomarkers, has become the forefront with no age 

2 Metabolomics analysis has been performed on an isolated mouse-embryonic fibroblast cell by 
sucking a cell’s contents into a nano-electrospray ionization tip and sent through a mass spectrom-
eter to measure compounds of low molecular weight [165].
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discrimination. Whereas previously the sick and elderly had access to continuous 
monitoring of biomarkers, all ages now have the ability, although still in a limited 
capacity compared to the standard of care in a medical center, to understand their 
current health and how it changes over time. With a focus on metabolomics, new 
technology is under development that will transform our understanding of personal-
ized health through the identification of biomarkers for various purposes, leading to 
recommendations for fitness, nutrition, early detection of disease, and optimal treat-
ments for a consumer.

As a pioneer of healthcare wearables, one of the major successes is the continu-
ous glucose monitor (CGM) [169]. These wearables are typically inserted into the 
interstitial fluid (ISF) in the skin and repeatedly measure the consumer’s glucose 
level at regular intervals. A CGM is traditionally worn by patients with type 1 or 
late-stage type 2 diabetes. Patients with diabetes must monitor their blood glucose 
levels because their pancreas does not produce insulin efficiently, resulting in the 
need for insulin intake through injection. A CGM monitors the healthy range for a 
patient, and some designs can send alerts when the blood glucose level is predicted 
to move outside the desired range. This intervention has reshaped the treatment 
landscape for diabetes, as patients can receive real-time readings of their glucose 
and, depending on the CGM provider, receive personalized information and recom-
mendations about diet and exercise. As increasing interest has been given to CGM 
devices, there has now been a noninvasive CGM designed, called GlucoWatch, 
which uses reverse iontophoresis to obtain glucose samples on the skin [170]. The 
development of a noninvasive CGM lays the foundation for future wearables which 
measure biomarkers traditionally through blood to design new ways to record these 
markers.

As CGMs have provided clear evidence of the success of metabolomic sensor 
deployment worldwide, new wearable technologies are being developed, targeting 
salivary and tear fluid metabolites. Both vectors are of great interest because they 
also provide noninvasive means of biomarker measurements. Mannoor et al. mea-
sured bacteria in saliva using a dental tattoo [171], demonstrating the ability to 
noninvasively detect harmful pathogens. Kim et al. have created multiple biosensors 
using noninvasive mouthguards, which have successfully measured lactate [172] 
and uric acid [173]. Google entered the CGM space in 2014 using tear fluid metabo-
lite measurements [174]. The demand for new wearables is evident, and there is a 
large potential benefit for both societal health and profits in emerging biotechnol-
ogy. This research is pioneering the metabolomics-centered wearable field with suc-
cess. As studies are validated, and new questions are asked and solved, an explosion 
of biomarker technology is likely imminent.

The wearables movement has largely been driven by private companies, as 
opposed to government agencies. As a benefit, the data that is collected can be used 
by these companies for internal research, new algorithms can be quickly developed, 
and more personalized recommendations for lifestyle changes can be given as a 
result. Conversely, consumers are, sometimes unknowingly, agreeing to share their 
health information with a source that could use this information to negatively affect 
them, for example, through increased healthcare costs if the company shares 
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information with insurance companies. We should be conversing about the potential 
benefits and drawbacks of continuous health monitoring and discussing possible 
regulations that should be enforced to keep consumer data secure and to help the 
consumer optimize health.

In addition to wearables, new devices which measure metabolites will impact a 
multitude of fields. To make metabolite measurement faster than current methods, 
Heinemann et al. created a microfluidic system that consists of a metabolite extrac-
tion chip (MEC) integrated with an automatic sampler, micropumps, and LC-MS 
detection [175]. Whole blood and urine samples can be analyzed in 7 min and 5 min, 
respectively. This innovation could severely enhance the possibility of clinical 
metabolomics becoming a reality, as samples could be taken, results could be 
received, and diagnoses could be made in the same patient visit. Measuring stool 
samples allows for a noninvasive method to determine a patient’s current nutritional 
status and future needs. Auggi, a startup acquired by Seed Health, aims to create an 
AI algorithm that uses the collection of stool samples over time to create connec-
tions between a consumer’s triggers and symptoms to suggest dietary needs [176]. 
This platform has the potential to increase biological knowledge about the influence 
of diet on overall gut health and demonstrate the use of stool as a method of bio-
marker development. It is possible that as more companies like Auggi are created, 
personalized healthcare usage of stool could become normalized as health benefits 
are discovered. Another area metabolomic devices have infiltrated is the criminal 
justice system. Abdelshafi et al. created a miniaturized device that can detect cocaine 
in bodily fluids using saliva and urine samples [177]. This technology may influence 
similar diagnostic tests to be developed for other drugs, increasing law enforce-
ment’s ability to correctly determine users under the influence. Finally, one amazing 
application of metabolomic devices in food is called ripeSense® [178]. This tool is 
the world’s first sensor that changes color to indicate how ripe a fruit is, allowing 
consumers to choose the fruit which is most suitable for their eating schedules. 
Through the engineering of new technologies designed to solve numerous problems 
using metabolomics, an applied metabolomics revolution is likely to begin as these 
exciting developments become part of our daily lives.

8  Recommendations

In the foreseeable future, major scientific endeavors will be focused on personalized 
care. Personalized care assumes that each of us has a biomolecular variation pattern 
determining the disease outcome entailing personalized medical interventions. This 
is best highlighted in twin studies; e.g., a multi-year study comparing pairs of mono-
zygotic and dizygotic twins found quantifiable differences in selected features of 
plasma proteome, which could not be explained, alone, by genetic similarity [179]. 
Similar studies have been conducted on metabolites [180], suggesting longitudinal 
and inter-individual phenotypic variability to differing degrees. It is now believed 
that certain biomolecular features with complex variation patterns may be 
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discovered which make a different person respond to treatments differently. The 
impact of the metabolomic approach versus the traditional biochemical approach 
can be appreciated by the work of Liu N. et al. wherein the use of untargeted metab-
olomics is employed to identify inborn errors of metabolism (IEM) [181]. Our next 
frontier to conquer in personalized medicine will be to identify physiological fea-
tures which can reasonably predict the upcoming pathological changes to optimize 
individual health. This would be achieved by both preventative biomarker utiliza-
tion to therapy response and monitoring biomarker discovery. Wearable devices 
which monitor heart rate, physical activity, sleep pattern, and other parameters are a 
start to this journey.

Metabolomics arguably holds more potential than other omics-based technolo-
gies, in detecting features (metabolites) mirroring the physiological state, with 
metabolites being a natural culmination of DNA-RNA-enzyme-metabolite dogma. 
However, we must be aware that metabolites change not only in disease vs healthy 
conditions but by age (citrate levels increase with age even in healthy controls), sex 
(hormonal differences along with level change with age), food habits, and popula-
tion niche as well. Something seemingly simple such as increased water uptake by 
the subject may alter the relative concentration of crucial metabolites and can have 
bearing on the interpretation of the data. This requires adopting a more careful 
approach, which can provide us with more information mirroring the person’s health.

To advance the field further, improvements need to be made at every step of the 
process. This involves sample collection, data acquisition, data processing, analysis, 
data storage, and sharing. Automation and standardization in sample collection 
practices must be followed. Sample type, collection method, storage conditions, and 
processing reagents all play a crucial role in the final output of experiments. 
Currently, absolute quantitation of metabolites (to achieve molar differences in key 
metabolites like cAMP or cGMP in healthy versus disease state) and untargeted 
metabolomics (to achieve complete metabolome endeavor) are two challenging 
aspects of metabolomics research. Absolute quantitation will open the field of bio-
marker discovery wherein key metabolites get perturbed in healthy versus disease 
state. Finding an array of key signature metabolites, which are altered, will be deter-
mining aspects of the success of metabolomics translation into clinics.

Further, to move the field forward, untargeted quantitative metabolomics is going 
to be of primary focus. For total metabolite detection and absolute metabolite quan-
tification, the approach of generating synthetic metabolite standards, including iso-
meric metabolites, will be a key aspect. In this endeavor, MSI is going to play a 
central role. Untargeted metabolomics is pursued to expand the breadth and totality 
of metabolome profiling. This can be realized with a rigorous and exhaustive pool 
of reference metabolites. Future work should lean toward collaborative approaches 
for metabolite synthesis, thorough characterization by atomic spectroscopy and/or 
NMR, and then inclusion into the reference metabolites list. A consortium with 
worldwide access will be essential to make these reference metabolites available for 
analytical, and reference material used. This would accelerate the field of biomarker 
discovery by identifying unknown metabolites, secondary metabolites, and person-
alized metabolic profiles for disease prognosis and treatment. To achieve this, the 
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research community, sample collection centers, analytical facilities/companies, 
statutory organizations, private device companies, and overseeing committees (e.g., 
bodies like MSI) need to come together and work for a common outcome. False 
discovery rate (FDR) is another factor that must be minimized by increasing the 
sample size to appropriate numbers (minimum 5, as recommended by MSI), with 
least perturbation by sample collection and preparation. This study discusses at 
length the promises and challenges in untargeted metabolomics [182].

Second, during the scientific discovery period, data acquisition of samples should 
be performed by utilizing different mass spectrometry modalities, which can 
increase the coverage of diverse types of metabolites from hydrophobic to hydro-
philic, uncharged to charged, cationic to anionic, and to different isomeric metabo-
lites, so that an exhaustive pool is generated, making the repository more exhaustive. 
This will feed into the system, and more and more metabolites will be discovered 
and characterized. We must appreciate that no single acquisition platform can 
achieve a global/total breadth of the metabolome. Hence, new discoveries ranging 
from diverse chromatography techniques, ultrasensitive mass spectrometers, and 
technological advancement will take us closer to our aim of profiling near-complete 
metabolome.

Third, the analysis of obtained data is one of the most crucial aspects of success 
in the metabolomics endeavor. For this, filtering out the most common metabolites 
and performing longitudinal studies wherein key metabolite is absent or more abun-
dant in condition A versus B.  For this, user-friendly software, training human 
resource, and automated data processing are the way forward. Open-sourcing the 
platforms and powerful analysis software would make it robust and conclusive. 
Further, combining the results from three different omics approaches (transcrip-
tomics, proteomics, and metabolomics) and integrating them to understand biologi-
cally relevant questions are crucial, and platforms like MetaCore, MetaboAnalyst, 
InCroMAP, and 3Omics are useful tools to analyze the metabolomic data in a stand-
alone or integrated manner. More robust open and connected platforms with robust 
statistical methodologies will greatly enhance the reach of the metabolomics 
approach.

Further, accessibility to the masses will be a key theme to bring metabolomics 
closer to life. For this, small yet sensitive instrumentation and pocket-size devices 
with the availability of reliable and easy-to-use detection kits will be a key advance. 
Metabolomics has a huge role to play in public safety like airports, sports adminis-
tration, and control (from detecting controlled/banned substances to measuring ath-
lete performance markers). This can be achieved by miniaturizing the instruments 
and making them available at the site of use. This will greatly translate the metabo-
lomic prowess to real-world use. Many of these current challenges, metabolomic 
technology updates, and opportunities for the future are discussed in good detail in 
different review articles for further reading [28, 61, 183].

Future Perspectives of Metabolomics: Gaps, Planning, and Recommendations



504

9  Conclusion

According to Gary Patti (one of the leading scientists in the field), “Metabolomics 
is like a molecular-level snapshot of what’s happening inside a cell or organism. It 
provides a unique perspective on the metabolic pathways that are active at a particu-
lar moment in time” [57]. It provides a molecular-level understanding of biology 
and connects it with the environment. A single human cell contains more than 
42,000 metabolites [184], and most of them are still uncharacterized. The use of 
advanced analytical technologies, coupled with the increasing availability of large- 
scale datasets, has enabled researchers to identify novel pathways that are associ-
ated with a wide range of biological phenomena and diseases. With these facts in 
mind, we believe that metabolomics would have a spectacular impact on biology 
and healthcare developments.

One of the key trends in metabolomics research is precision medicine, which 
aims to provide personalized treatment options based on an individual’s unique 
genetic makeup and metabolic profile. In this chapter, we have summarized the 
potential of metabolomics in precision medicine by identifying biomarkers that can 
be used to predict an individual’s response to different treatments. In the same direc-
tion, personalized nutrition is another area where metabolomics can have a signifi-
cant impact by identifying dietary biomarkers that can be used to develop 
personalized dietary recommendations. We have also reviewed the development of 
novel computational tools and their applications to integrate the metabolomics data 
with other omics (such as genomics, transcriptomics, and proteomics) and provide 
a more comprehensive understanding of biological systems. A comprehensive seg-
ment delineated the connection between translational biology and therapeutic prog-
ress, stemming from the comprehension of metabolic levels in diverse disease 
models and pathogens.

We hold the belief that interdisciplinary partnerships are vital for the advance-
ment of metabolomics research. Collaborating with experts from various fields, 
such as biology, chemistry, computer science, mathematics, and engineering, can 
uncover fresh insights into biological systems and facilitate the identification of 
novel biomarkers and pathways linked to disease. Moreover, the significance of 
metabolomics research in public health cannot be overstated. It has the potential to 
revolutionize healthcare by allowing for early disease detection, more precise diag-
nosis, customized treatment, and nutrition options. Nonetheless, some obstacles 
must be overcome to fully realize the potential of metabolomics in enhancing 
human health. These challenges involve standardizing sample collection, data 
acquisition, data processing, data analysis, data storage, and sharing. To sum up, the 
prospects for metabolomics research are bright and full of promise. With the con-
tinuous progress of advanced analytical technologies, along with the growing avail-
ability of large-scale datasets and the use of artificial intelligence and machine 
learning, researchers and clinicians will be able to make faster decisions.
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